Woods Hole"
Oceanographic
. Institution
DTIC

ELECTE
AUG1 41330

AD-A225 214

—

—

VOICE - A Spectrogram Computer Display Package

by
Ann Martin, Josko A. Catipovic, Kurt Fristrup, and Peter L. Tyack

June 1990

Technical Report

Funding was provided by the Office of Naval Research through
Grant Nos. N00014-88-K-0273 and N00014-87-K-0236,
the National Institutes of Health through Grant No. 1 R29 NS25290,
and the Andrew W. Mellon Foundation.

Approved for public release; distribution uniimited.

WHOI-90-22

VOICE - A Spectrogram Computer Display Package

by
Ann Martin, Josko A. Catipovic, Kurt Fristrup, and Peter L. Tyack

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

;\(?’.5(.‘5'0' For l
[NTIS Craal '
July 1990 s o v |
Uigcounr.Led Q
Jushiticaten .
By
. Disteibution | i
Technical Report T :

Avgilahiity Cedes

| avan adfor

Dist Special

Al

Funding was provided by the Office of Naval Research through
Grant Nos. N00014-88-K-0273 and N00014-87-K-0236,
the National Institutes of Health through Grant No. 1 R29 NS25290,
and the Andrew W. Mellon Foundation.

Reproduction in whole or in part is permitted for any purpose of the
United States Government. This report should be cited as:
Woods Hole Oceanog. Inst. Tech. Rept., WHO0I1-90-22.

Approved for publication; distribution unlimited.
Approved for Distribution:

J

Albert J. Williams Srd, Chairman
Department of Applied Ocean Physics and Engineering

.

Abstract

\

A real-time spectrogram instrument has been developed to provide an inexpensive and

field-portable instrument for the analysis of animal sounds. The instrument integrates a
computer graphics display package with a PC-AT computer equipped with an A/D board
and a digital signal processing board. It provides a real-time spectrogram display of fre-
quencies up to 50kHz in a variety of modes: a running display, a signal halted on screen,
successive expanded views of the signal. The signal amplitude may also be displayed. Por-
tions of the scrolled data may be saved to disk file for future viewing, or as part of a
database collection. The screen display may be manipulated to a.dapt to special needs

Program source listings are included in the text. 11{?\ e f; H?U ,L'(X e .,L(/
e c QX . : 1 17 A e .
/-%/ 7 /(, & s // // DAV ERY
/(’ R
1

Acknowledgments

The development of the VOICE spectrographic display package has been a joint project
between the AEL signal processing group of the AOPE Department and the Marine Ani-
. mal Bioacoustics Laboratory of the Biology Department. Funding for the work has been
from the Office of Naval Research under contracts N00014-88-K-0273 (Watkins/Fristrup)
and N00014-87-K-0236 (Tyack), and National Institutes of Health grant 1 R29 NS25290
(Tyack). Support also was from The Andrew W. Mellon Foundation (Catipovic/Martin).
The detailed description of the software development has been primarily by Ann Martin.

Table of Contents

ABSTRACT
ACKNOWLEDGMENTS
INTRODUCTION

SYSTEM OVERVIEW
Optimizing the Hardware Interfaces
Program Structure

USING THE SPECTROGRAM INSTRUMENT
Installation
Running the Program
Command Line Options
Interactive Commands

FUTURE DEVELOPMENT AND APPLICATIONS
REFERENCES

SOURCE CODE LISTINGS

Tables

Table 1. SKY321 Modules

Table 2. Installation Guide
Table 3. Command Line Options
Table 4. Interactive Commands

-3

13
13
13
15
17

21

22

23

10
12
14
18

O I O T I I I G E ENEA Fmax = 3.81 kHz
'1 PR T R FY 114

~l d . !"l. T ’
; S!S
- ; NI Y ST B B
) A . L
. :é M’ ';‘ . ﬂ * ?’
‘ prone g N b W

1]
w®

Fmin

W

Fmax = 3.81 kHz

Fmin =8

s save tofile
X exit
F1,F2 left curs
F3,F4 right curs
esc prior screen
del erase bar
enter next zoom
space realtime

Legal keys:
F1,F2,F3,F4
1 = uz x, s, h (help)
H: N1 Cesc),{del)
B 1 [144 {space),{enter?
32 O 32767

The upper panel illustrates a section of humpback whale song in
the memory display mode of VOICE. Cursors bracket the section
that was expanded to produce the display in the lower panel. The
lower panel also illustrates the help and message windows.

4

‘_

Introduction

A real-time spectrogram instrument has been developed to provide an inexpensive and
field-portable instrument for the analysis of marine animal sounds. Named VOICE, the
computer graphics display package is a combination of software and hardware components.
The software has been designed so that a user with minimal computer experience can
integrate this tool with a suitable application.

VOICE displays both spectrograms and waveform displays in real time on a computer
screen. Sounds prerecorded on an analog audio tape can be directed simultaneously into
both an amplitier and the VOICE computer. A microphone or hydrophone connected to the
VOICE computer can also be used to display live animal calls on the <:reen. The ability to
see the spectrograms of the sounds at the same time that they are heard greatly facilitates
the identification of patterns that might go unnoticed when scanning depends solely on the
human ear.

The developed tool provides a real-time spectrogram and waveform display, on-line save
buffer editing and disk storage. Some of the instrument’s capabilities are listed below:

Continuously digitize an analog channel at an aggregate acquisition rate of 100
k samples/sec.

Compute and display in real time a spectrogram and its envelope waveform with
a clipping indicator at screen scroll rates up to 7 sec per monitor width.

Halt the screen so that a spectrogram can be viewed as long as desired.

Delimit a spectrogram signal with cursors for successive expansions of events
too detailed to be examined in real time.

Customize the screen display by controlling the sample frequency, setting the
number of points per transform, setting the interval betwzen time ticks marking
the elapsed time for the data to scroll across the screen, modifying the levels at
which colors change, modifying the color spectrum.

Save delimited segments of digitized data to disk. The maximum save buffer
length is 384 kbytes.

Replay spectrogram data which has been saved during an earlier session.

The hardware unit consists of a PC AT with an EGA display and hard disk, an analog-
to-digital (A/D) converter board and a digital signal processing board; these added compo-
nents cost about $2500. In addition, a bandpass filter/preamp device such as “Frequency

Devices 9002” (about $2800) can be used between the audio tape and the A/D system to
control input gain and to prevent aliasing. The cost is low compared to commercial spec-
trogram machines. The package was tested on a number of portable PC’s (such as the NEC
PowerMate Portable), which are well suited for field instrument use. This allows powerful
signal processing and data acquisition capabilities to be brought into the field at modest
cost.

The instrument development was motivated directly by the need of WHOI biologists
to scan extensive analog data sets of marine mammal vocalizations, where the goal is to
extract digital representations of exemplary marine mammal calls. It is difficult for many
researchers to afford the spectrogram analysis workstations that are available commercially.
In any case, such instruments are not suitable for field use, particularly in the remote
locations frequented by WHOI researchers. The developed package allows for efficient data
analysis and acquisition capabilities by Institution researchers at a reasonable cost, and
thus contributes to their overall observational capabilities.

System Overview

The main hardware element is a PC-AT compatible personal computer with either an
80286 or 80386 CPU. An 8 MHz machine is adequate, although faster clock speeds and
the substitution of an 80386 CPU result in correspondingly faster execution speeds. The
PC Intel 80286 or 80386 CPU is used as the display and storage controller and system
supervisor. Display on a compatible monitor uses the EGA graphics standard with 640x350
pixel resolution. A gray scale can be used with monochrome EGA, such as that found on
Supertwist LCD and gas plasma screens common to portable computers, but a color display,
which maps signal amplitude to a color palette, makes interpretation easier for the user.

The VOICE spectrogram uses the SKY321-PC fixed-point (integer) digital signal pro-
cessor, which includes the Texas Instruments TMS32010 digital signal processing chip as the
numerical engine. As the data memory is double ported, it can be accessed simultaneously
by the PC and the TMS320. An efficient memory controller can accomplish simultaneous
accesses with only occasional wait states issued to the PC or the TMS320. This efficient
memory management scheme was the primary motivation for selecting the SKY321-PC
add-in board. Since relatively large amounts of data are moved across the interface at each
frame, the data handling efficiency becomes more important than the relative clock speed
trade-offs between various TMS320 chip versions.

The analog data is acquired and digitized by the MetraByte DASH-16 A/D board;
however, any PC-compatible board with a DMA capability can be accommodated. At ac-
quisition rates of up to 100kHz, the DMA overhead becomes significant, adding up to two
seconds to screen scroll time for an 8-bit DMA board. For this reason, PC-AT compatible
boards with 16-bit transfer capability are preferred.

Optimizing the Hardware Interfaces

For a spectrogram to be displayed in real time along with an audio signal, a fast
scrolling and processing rate is critical; details of the spectrogram would be lost without
this turnaround speed. To achieve this during real-time mode, there are three indepen-
dent subsystems operating: the DMA activity, the TMS320 numerical data processing, and
the CPU data transfer and screen display routines. Care was taken to balance the load
" between the TMS and the Intel 80286 processors; the efficient coupling of these two pro-
cessors largely determines the ultimate speed of the real-time display and the usefulness of
the spectrogram. The 80286 is concerned primarily with data formatting and display, the
TMS with the numerical routines.

To reduce acquisition overhead, the A/D board is used in a continuous DMA mode,
where a circular buffer is repeatedly loaded with newly acquired data. Up to 384k (six 64k
pages) of memory storage is made available to the acquisition DMA, and it is continuously

filled with the data. The DMA is redirected to a new page after a terminal count (TC) is
received upon completion of a page. The TC is wired to a system interrupt; the interrupt
routine assigns a new DMA page to the data acquisition buffer, and updates the buffer
list. Only one instruction is required to reassign a page: only the page register needs to
be modified. The principal advantage of this scheme is the availability of a relatively large
buffer, with no requirements for external memory cards. The CPU polls the DMA IC for the
most recently written address and downloads the most recently written data segment to the
TMS. When expand mode is entered, the DMA activity is stopped, and the memory buffer
referenced from the last address written. This method is relatively simple to implement, and
guarantees that there will be no lost samples, since the DMA is writing continuously. This
allows for work on complex data sets, such as high bandwidth vocalizations (e.g. dolphin
whistles) or long records such as whale songs.

The PC transfers the data between the circular data buffer and the TMS320. The ac-
quired data typically is offset binary, which is converted to two’s complement and normalized
with a software-selectable gain before being downloaded to the TMS.

The TMS320 operates on a data buffer downloaded to its memory and outputs a flag
signifying that a completed data buffer has been placed at a predetermined location in its
memory. The location of the input and output buffers is controlled by the PC microproces-
sor, which implements a double buffering scheme so that a set of output and input buffers
is manipulated by the PC while the TMS320 is operating on a distinct set. The buffers are
flip-flopped at each frame.

Program Structure

The software was developed within the MS-DOS 3.2 operating system using Microsoft
Version 5.0 C compiler and Microsoft Macro Assembler Version 4.0. The Version 5.0 C com-
piler was used specifically to take advantage of the graphics functions that were introduced
at this version level. In addition, routines unique to the SKY signal processing board are
integrated into the VOICE software structure. The SKY321 environment includes a host-
resident SKY321 macro operating system, a SKY321 macro preprocessor, and a SKY321
assembler.

The primary functions of the main program are to control interaction with the user
via the initial command line and the keyboard; output processed data to the screen and,
optionally, to save raw data to a disk file; and to accept and transfer data addresses. In the
initialization section, the program also loads program and data files to the TMS board and
turns on the digitizing card.

The CPU controls all output to the monitor. The EGA driver is accessed directly with
register commands; a fully register-compatible graphics subsystem is required. To address
the hardware through DOS interrupts would reduce the display speed at least threefold,
rendering the system useless for practical bioacoustic analysis. Significant effort was spent
to insure careful optimization of the graphics routines.

The dimensions of the screen affect the display scrolling rate, so they were chosen to
facilitate screen speed, and to allow sufficient space for annotations on the margins of the
screen. The EGA map allows for a screen display of two windows, each with 128 pixel rows,

one above the other, along with system configuration information. The writing of pixels
directly to the EGA video RAM is a two-step operation. When each 256-point array has
been returned to main memory from the TMS board, with each element of the array coded
for color, half the array (128 points) is sent as a column of pixels to the righthand end of
the display area, where there is space available for eight pixel columns. When this group
of columns is filled, the entire display is moved left by eight pixel columns, so that the
lefthand array set scrolls off the screen, and room is provided on the right to receive new
pixel columns of data. The factor 8 was chosen because EGA treats 8 horizontal pixels as a
unit; each EGA unit is 8 pixels wide by 1 deep. This characteristic enables smooth scrolling
from top to bottom of a display; however, the application for which VOICE was developed
required scrolling from right to left, the usual convention with bioacoustic/speech analysis
display tools.

The scrolling routine required optimization, as each data point representing a screen
pixel must be physically remapped to a new location at each screen scroll. As the screen
windows are 128 x 480 bits each, and a screen scroll time represents the time for a single
pixel to move across all 480 columns, the screen scroll routine could be a system bottleneck.
Fortunately the EGA standard provides for a 32-bit (8-pixel) move with a single (block
move) instruction, and this allows the screen to be scrolled in three seconds when there is
no other system activity on an EGA system with no wait states at 10 MHz operation.

The screen write commands are not as critical as the scrolling. The bit-mapped data
are written to the screen with direct register command, and the stationary information
outside the windows is handled through the high level graphics library provided with the
Microsoft Version 5.0 C compiler. These screen annotation functions are used to display
cursors, draw and fill colorcoded boxes, and to write prompts and data values to the screen
margins surrounding the spectrogram display.

Interaction between the PC and the SKY321 occurs on two levels, through programs
executed on the PC, and through those executed in the SKY board. The full list of SKY
modules used by the VOICE program is listed in Table 1. The execution of the FFT
processing programs is assigned exclusively to the SKY board. The only role played by
main program VOICE is to download the appropriate program and a sine table for all
transforms up to 1k, during execution. This is done just once, at initialization. A library
of FFT programs is available, reflecting such parameters as the display complexity and
color maps, and the data buffer/FFT size. The PC microprocessor selects the appropriate
program based on the configuration parameters. The TMS320 programs, written in TMS320
assembly language, are carefully optimized, as their execution can be a significant bottleneck
to processing speed. The SKY library function modified for VOICE is FT256, a complex
Fast Fourier Transform. In order to optimize the division of processing resources between the
PC and the SKY board, FT256 was augmented to compute squared magnitude of the FFT
values and to assign color codes to the processed data. The values returned to the PC from
the SKY board could immediately be sent to the EGA display without further processing.
The FFT library function was adapted for the spectrogram display. The program remains
active in the SKY board throughout a session, repeatedly processing data sent to it from
the PC, and returning the output values on command from the main VOICE program.

Table 1
Integration of SKY321 Modules with Program VOICE

Description Implementation
fftcolor.320 FFT program executed downloaded to SKY board

on SKY board during VOICE execution
sintab.dat 1k FFT sine tablé used by downloaded to SKY board

SKY board for FFT calculations during VOICE execution

hsmos.h group of functions to control included in main program
interface (I/0) between PC VOICE as header file;
and SKY board invoked by VOICE program
S32asm.obj linkable SKY object module included in VOICE link

command to enable hsmos routines

10

SKY supplies routines for initializing and controlling the SKY321, the “Host-resident
SKY320 Macro Operating System” (hsmos). The main VOICE program controls execution
of these modules. The file hsmos.h includes 14 functions which start and stop TMS process-
ing, and transfer data between the TMS and the PC. The reference manual gives details
about eight of these functions; we found this scheme to be restrictive, and so bypassed
several of the eight top-level functions to directly address the lower level functions. The
source code is commented sufficiently to make this course of action reasonable. While the
processing program is running, the TMS is stopped briefly by the PC once per data frame
in order to update the input/output buffer locations for the next frame. These parameters
must be loaded into the TMS program memory, and the SKY PC board requires that the
TMS be stopped before its program memory can be accessed by the PC.

Operation of the digitizing card is controlled by a group of C functions from the main
program; they turn the digitizer on or off, and read the last address accessed by the CPU’s
DMA. Input data are sent directly from the DMA board to the SKY board, with the main
program VOICE specifying the addresses of the input buffer and the TMS buffer. The
digitizing card and the TMS board thus are coordinated so that data values are transferred
to the main program only once — when they are ready for display.

The source code for VOICE is comprised of the main program and multiple functions
written in both C and assembly language; a brief description of each function is given at
the end of this report. The SKY hsmos.h header file is included in the main program so
that it can be compiled by the C preprocessor. Each module is compiled using Microsoft C
large model. We collected all object files in a library, vce.lib. Note that the FFT program
fftcolor.320 is not part of the vce library; it is a binary file which was assembled using the
SKY assembler SKYMPP during program development. The compiled VOICE package is
linked with SKY320 object code (S32asm.obj), supplied by SKY. The SKY system requires
that the /ST32767 option be specified during linking. As an example, here is some sample
code to compile a C function named labelv.c, add it to the library, and then link it with
the SKY routines to produce an executable version of VOICE:

CL /AL /c labelv.c
lib vce-+labelv;
link /ST32767 voice+S32asm,voice,vce.lib;

11

Table 2
Installation Guide
MetraByte DASH-16 high speed A/D converter board

Before installing the board in the machine, set the following switches, using a small screw-
driver or a pen. Do not use a pencil.

Base Address switches:
1-off
2 -off
3-on
4-on
5-on
6 - off

DMA slide switch: level 1
CHAN CNFG (channel configuration) slide switch: 8
A /D slide switch (controls input range): BIP (bipolar)

Gain: Set for appropriate input range

switch | +/-10v | +/-5v | +/-2.5v | +/-1v | +/-0.5v
1- on off off off off
2- off on off off off
3- off off on off off
4 - off off off on off
5- off off off off on

SKY321-PC Coprocessor Board

Set data memory base address to D000: at JP2, jumper 3 - 4.

Set program memory base address to C800 : at JP4, jumper 3-12, 4-11, 6-9, 7-8.

Install the A/D board and the SKY coprocessor board in any free full-width slots.

Copy all SKY software into a \TMS directory. Copy dsp321.dat from the VOICE floppy to
the \TMS directory. :

Test the coprocessor board by running TST321. Be sure the test runs at least twice.

12

Using the Spectrogram Instrument
<

Installation

Installation of the hardware should be done by someone who is able to remove the cover
from the PC and install the two accessory boards. The MetraByte DASH-16 A/D board has
switches and jumpers that must be set before the board is installed in a slot. Instructions
for setting these are given in Table 2. The A/D system also includes a box external to
the PC, a “Screw Terminal Accessory Board Model STA16”. The input cable from a tape
deck or microphone feeds into this box; a ribbon cable from the box then is plugged into a
connector on the edge of the A/D board. This configuration may be modified so that the
input cable runs through an antialiasing filter before reaching the STA16 box. The audio
signal can be heard while the spectrograms are displayed if a split input cable is used, with
one cable attached to the STA16 box and the other to an amplifier. The SKY321 board
must have two base addresses set; it is then installed simply by sliding it into any available
slot in the PC. ,

In order to run the program, the following files are required in the current directory:

voice.exe main executable program
fftcolor.320 TMS320 executable program
sintab.dat TMS320 FFT sine table

Running the Program

The program may be run simply by typing “voice” from a directory containing all the
above files. An audio line output standard signal (1.0v RMS = 0 dB) at the digitizer input
is assumed. The sample frequency is 50kHz, resulting in a signal display of ten colors
from DC to 25kHz, with the top window displaying the spectrogram of the signal, and the
bottom window showing a narrow waveform envelope, with the clipping window activated.
Default values delimiting each color are 1, 2, 4, 8, 16, 32, 64, 128, 192, 256, 320, and 32767,
which display the optimum spectrograms of ocean mammal sounds. No data are saved.
The program is exited by typing ‘x’.

Interaction with the VOICE program is on two levels: through command line options,
and through specified keystrokes while the display is running. The command-line options
configure the system with desired operation details, i.e., optimized parameter settings for
particular animal vocalizations or data acquisition modes. Once running, the program is
interactive through the keyboard.

13

Table 3

Command Line Options

-f1b

-fle

change color map via the colors.dat file

change color threshold level via the levels.dat file

sample one channel; display spectrogram in top window

sample one channel; display spectrogram and a bar graph indicating
RMS signal amplitude (default)

sample one channel; display spectrogram and the lower window of
the RMS signal amplitude

set the size of the incremental step used to read a file of
spectrogram data

set number of points per transform, zero pad the rest (default = 128)

assign a file of previously saved spectrogram data to the input stream

set sample frequency in kHz, using an even number; displayed spectrogram
is half the sample frequency (default = 50kHz)

set interval (seconds) for display across top of screen (default = 1.0)

14

Command Line Options

The command line options can be invoked on line at run time, or listed in a batch file
for repeated use. If the system is to be used in one mode only, and ease of use is a prime
factor, the defaults can be changed (in function cmdopt.c) to reflect the required features,
and the software package recompiled and linked. A typical command line might be:

VOICE -fle-t .5 -5 15

This particular line would result in a display of a spectrogram across the top of the screen,
with the waveform envelope in the lower window stretching from one border of the window
to the other; time ticks across the top of the screen every half second; and a sampling
frequency rate of 15kHz (instead of the default, 50kHz).

The display of a spectrogram in the top window, with the signal envelope appearing in
a bar-type display at the right of the bottom window, is the default, specified in the list
of command line options as “-flb”. This mode is particularly useful for fast scrolling of a
single spectrogram. When the display leaves real-time mode, and is used to examine data
stored in memory, the bar indicator is replaced with a signal envelope the full width of the
lower window; during memory operations, speed of scrolling is not a factor. The real-time
spectrogram display can also be used with a signal amplitude display which stretches the
full width of the bottom window (“-fle”) when the signal waveform is of inherent interest,
such as for voice amplitude analysis, or when it is critical to guard against clipping of the
digitized signal.

The sampling command “-s #”, where # represents some number, determines the digi-
tizer sampling frequency. In order to determine the proper sampling frequency for a partic-
ular signal, you must first determine the maximum frequency at which the signal contains
energy. This can be done using VOICE by setting the sampling rate higher than twice the
likely highest frequency of the signal, and then using the spectrogram to measure the high-
est frequency. The sample rate should be set to 2.5 times the highest frequency, or higher.
This is a critical factor in achieving a meaningful spectrogram. For example, a dolphin
whistle with a maximum frequency of about 20kHz produces a clearly defined spectrogram
at a sampling rate of 50kHz. At the same sampling rate a humpback whale song is scarcely
visible; however, if the sampling frequency is set at 2 or 3kHz, the same whale song appears
in full detail. The spectrogram display on screen is half the sampling frequency; a 50kHz
sampling rate yields a 25kHz spectrogram signal. The desired sample frequency is entered
in kHz. Note that the system may not be able to synthesize the exact frequency requested
for all cases, since the sample frequency is derived by integer division of a 1 MHz oscillator.
In that case, the closest available frequency is selected. With the the DASH-16 board, the
maximum sample frequency is 100k samples/sec. If the desired sample frequency exceeds
the board capabilities, the highest possible sample frequency is selected. Once the sampling
rate has been chosen, either by taking the 50kHz default or by using the “-s” option, that
rate remains in place for the entire session. To change the rate, the user must exit from the
program, and start VOICE again.

For very low frequency sounds, the display can also be sharpened by using the “-n #”
command. This selects the number of input points for each FFT; the default is 128 (256/2).

15

I

The FFT size presently is fixed at 256; the “-n” command establishes the number of points
within the 256-point transform. If n points are used, the rest of the FFT input is zero-
padded. Generally, decreasing the number of points sharpens up the display of broadband
transients at the expense of overall display quality. This effect is particularly noticeable
with very low frequency impulsive sounds, such as fish grunts.

Time ticks across the top edge of the top window mark the elapsed time for sections of
the display to scroll across the screen. The default is for one second between ticks; with the
“-t #” command it can be changed as desired. Choices should be entered as decimals, e.g.,
.5 for half a second. 4

Data saved to file during a previous session — an operation described in the section on
interactive keystrokes — may be displayed by running VOICE with the “-r” command line
option. The exact format is

voice -r somefileid

A default for spacing through the disk file has been set which provides a display to fill the
entire window width when the source is a disk file of “moderate™ size, an arbitrary choice
by the programmer. If the user is faced with a vertical sliver of color when he attempts
to review some saved file, the saved data file is probably far smaller than the “moderate”
size. Such a file can be viewed by using the “-i #” option. The choice of number to replace
the pound sign is an estimate which the user will learn to make with experience. Since the
default “i” number is 138 x 6 (828), a good place to start is 138.

The VOICE package also includes two data file templates which can be used to change
the color spectrum in the spectrogram display — colors.dat — and to alter the levels at
which colors change — levels.dat. They may be modified using any editor to suit the user’s
requirements. Note that the choice of levels should be keyed to the output of the FFT
processing, which produces maximum values lower than those of the raw data. Restrictions
on these data files are:

¢ a maximum of 16 values may be used in each file
¢ the number of colors and levels used should be the same
e color values following the last used must be “63”

o the level value following the last used must be “0”
If these templates are to be used, the program needs to be informed by the use of the

command line instructiorn “-cc” for a color spectrum change, and “-cl” for a change in the
color threshold levels.

16

Interactive Commands

The interactive commands are entered on the keyboard while the program is running.
They were designed specifically to make the program easy and natural to use. All interac-
tive messages and prompts appear in a window at the lower right of the screen; if any illegal
commands are entered, a message is displayed, listing the keystrokes that can be used at
that juncture. On-screen explanations of the keystroke functions can be displayed in a help
window which appears when the user strikes the ‘h’ key. The keystroke list varies depend-
ing on which mode of the program currently is operative; only those commands directly
applicable are displayed. Table 4 summarizes the commands, and flags each command by
mode. If the command is relevant to a running display, while data streams across the dis-
play window, it is flagged as “realtime.” This running display can be stopped at any time
for closer examination of a spectrogram in “memory” mode. Commands tagged as “global”
are valid in both modes. During real-time display of data, the relevant commands are
‘x’, ‘f7, ‘h’, ‘m’, and . This is the initial default mode when the program is started.
If the signal which appears on screen merits closer examination, touching the ‘m’ (memory
mode) key will halt the flow of new data and invoke a display of up to 384k of data stored
in the program’s memory buffer — the same data that was on screen when the ‘m’ key was
hit. To return to the running display, the user touches the spacebar.

The memory-mode commands are all related to functions which operate on the 384k of
data which were captured in memory when the ‘m’ key was hit. This buffer full of data
can be recalled to the screen for careful examination, expanded for a study of details, and
saved to a disk file. The commands enabled during memory mode are the cursor keys, ‘h’,
‘s’, ‘x’, <esc>, , <enter>, <space>, and the signal gain controls.

Hitting the ‘x’ key on the keyboard terminates the program and returns to DOS. Im-
proper program exit, such as the use of ‘Ctrl C’, may leave the data acquisition DMA run-
ning, with disastrous consequences to subsequent operations. If VOICE crashes the system
upon exit, it is probably because the DMA activity was not stopped during a nonstandard
exit.

The “f* key will freeze the spectrogram display. This feature is useful if a scrolling
spectrogram deserves further scrutiny, or is to be plotted by dumping to a dot matrix
printer. The two requirements for making such a plot are that the printer allows graphics
mode, and that the DOS command “graphics” or “crtdump” previously has been invoked
(usually in the autoexec.bat file). The user should be aware that data will continue to
stream through the memory buffer while the spectrogram display is static on the screen; if
the user’s next action is to display the contents of memory, they may be very different from
the screen display at the time the ‘f’ key was hit. After a freeze screen, the usual action is
to hit the spacebar and return to a real-time display.

Both the save and the expand capabilities of the program depend on an initial display
of the memory contents, which occurs when the user hits the ‘m’ key. Data acquisition
is halted by this action so that the contents of the memory buffer will be available for a
series of displays, and for saving to a file. The display is calculated so that the spectrogram
derived from data in the memory buffer always fills the screen, no matter what percentage of
the buffer has been filled with data. All the new data in memory scrolls across the screen,
stopping when it reaches the left margin. If the entire 384k buffer has been filled, the

17

Table 4
Interactive Commands

mode key function'

global x exit the program

global h display help window

realtime f freeze the screen (static display)

realtime m display spectrogram of data currently in memory
memory s save data delimited by cursors

memory | < F1 > | move left cursor to the left

memory | < F2 > | move left cursor to the right

memory | < F3 > | move right cursor to the left

memory | < F4 > | move right cursor to the right

memory | < enter > | signal that cursor positions are final

memory | < esc> | recall the previous screen

global < space > | restart the real time display

global < del > | erase clipping light below the signal amplitude display
global 1 increase signal gain by 3 dB

global ! decrease signal gain by 3 dB

realtime - decrease scrolling speed

realtime - increase scrolling speed

18

spectrogram is somewhat compressed in order to fit on the screen in its entirety; however,
if the user should hit the ‘m’ key before the buffer has been completely filled, only new
data will be used, so that the spectrogram may be expanded as it stretches from one side
of the window to the other. A partial buffer display can occur when a user requests a new
memory display immediately after leaving an earlier display. At a low sampling rate, such
as 10kHz, it takes a long time for the buffer to refill.

When the screen has filled with the memory display, line cursors appear at each edge
of the window. Thereafter several options are available until the screen is returned to a
real-time display: expansion displays of portions of the memory buffer data; saving to disk
file of any portions of that data; redisplay of earlier screens of spectrograms — the “recall”
feature.

The cursors allow the user to take advantage of the program’s capabilities for enlarge-
ment. The <F1> and <F2> keys are assigned to the left cursor, the <F3> and <F4> keys
to the right cursor. Each tap of an F key moves the line cursor eight pixel columns (the
width of a text column). Holding down a key results in a quick succession of moves by the
cursor. When both cursors delimit the portion of the spectrogram that is of interest, the
user may choose to save that portion by hitting the ‘s’ key, or to hit the <enter> key in
order to see that portion expanded to fill the window. This expand capability can be used
on each screen display as the data are enlarged repeatedly. This allows for the examination
of events too detailed to be observed in real time. For instance, a whale click 1/10th of a
second long can be located on the real-time display, but the details of the amplitude and
frequency distribution can be seen only when the spectrogram has been expanded.

- Each expanded display fills the screen window completely, from side to side. The entire
display is bracketed by vertical bar cursors which delimit the start and end of the displayed
data. The exact matching of the data display width to the window dimensions enables the
system to track changing start and end positions in the data as the cursors are moved. The
requested data are sampled in 480 evenly spaced data segments, using a calculated step
to advance the starting location of each segment; the screen window is 480 pixel columns
wide. This offset is calculated by dividing 480 into the data length — the number of points
between the start and end of the delimited data. The resulting step value must be an even
number so that the data values can be read in pairs of sine and cosine. If the value is an
odd number, it is decremented to the next lower multiple of 4. In theory, the step between
starting values could be a minimum of 4. In practice, the scheme produces exactly 480
columns of pixel data for interval steps of 20 or greater (at least 9600 bytes of data, or 2400
groups of sine-cosine pairs). When steps are smaller than 20, the need to decrement a step
value combines with granularity problems to prevent division of the available data into 480
even sets. The result is an excess of data columns — too much data. In the example below,
the user has requested 9456 data points.

9456. / 480. = 19.7
Sample period must be 16

With a sample period of 16, the 480 pixel columns would display 7680 points; there are
1776 points left over. One choice would be to lop off the extra data to force an exact fit on
the screen. However, in the interest of veracity we chose to exclude displays which would
overflow past the left margin. When a display cannot be made, a message appears at the

19

lower right of the screen; although the data cannot be displayed, it can be saved to a disk
file. If the save is not wanted, the previous spectrogram is sent to the display window.

The ‘s’ command saves to file the section of data delimited by the cursors. The data
saved is the raw offset binary digitized data. A prompt requesting a filename appears at
the right; the user enters his choice of filename, followed by the <enter> key. If the desired
file already exists, the new buffer is appended to it. This mode is useful, for example, in
cases where the digitized data is sorted by species, such as when scanning a tape containing
dolphin and whale calls. Examples of each can be separated into the respective files and
saved. The disk writing operation begins immediately, as indicated by the message on
screen. When it is completed, the message announces this fact, and the user is then free to
move the cursors for another expansion (if the current display segment is not too small),
make another save, return to the real-time display, or to recall an earlier display.

The “recall” feature is the reverse of the expand operation. After several screen expan-
sions, the user may wish to return to a screen display which occurred early in an expand
series. The display which immediately preceded the current display can be recreated in
the window by hitting the <esc> key. This key can be used repeatedly to step backwards
through the expand series until the original display of memory is reached.

The arrows on the cursor pad may be used to increase/decrease the signal gain in
software — the up and the down arrows — and to increase/decrease scrolling speed — the
left and right arrows. These arrows will work only when the <NumLock> key is off. The
gain is a software value, initially set to 0, which is incremented or decremented by one for
each keystroke; the value can be either positive or negative. The input data values are
multiplied by 2 raised to the power of the gain value before they are processed by the FFT
operation. Note that scrolling speed cannot be increased to more than the default; the
speed increase key is useful only when the scroll speed previously has been decreased. The
gain and the scrolling speed features can be invoked only during a real-time display; they
are not enabled for a display of memory.

Often it is critical to know whether the digitized input signal is clipping. This can occur
when the gain of the analog signal saturates the A/D converter. A clipping indicator has
been included as a monitor for this condition. It is enabled in the default mode of VOICE
where the signal amplitude is displayed along with a spectrogram. If clipping occurs, the
waveform appears to overflow into a small vertical bar on the lower right of the screen.
When this warning of too much gain has appeared, it can be erased by hitting the
key.

20

Future Development and Applications

The VOICE program, which initially was developed to answer a specific need, has
evolved into a versatile tool for a growing number of applications. Data may be input
from analog tapes, from a live signal via a microphone, or from disk files holding binary
data. All sources produce spectrograms, the main function of the program. Data may be
viewed in a variety of modes — streaming from right to left, halted on screen, or expanded.
Depending on the application, the spectrograms may be viewed with no saved output;
delimited so that specified raw data from the input source is saved to disk file; or the screen
display may be reproduced on a printer. The screen display itself can be manipulated; the
amount of information displayed is determined by the user’s choice of whether to view the
signal waveform; and the setting of the interval between the time ticks across the top of the
screen permits estimation of the length of each signal.

At present the program can display one channel of data; the program already has the
“hooks” to add the capabilities of a two-channel and a four-channe] display. Sampling
frequency is now limited to a maximum of 50kHz by the A/D board; since the rest of the
system can handle up to 100kHz, this constraint could be removed by use of a different A/D
input board and the replacement of the present data acquisition subroutine in the software
package. Presently the largest section of data that can be saved with a single command
is 384K (six 64K pages), but subsequent saves can append data to the same file; with the
addition of extended memory to the PC and some changes in the code, a larger section of
data could be saved in a single operation.

These are a few possibilities for expanding the capabilities of VOICE. In the short time
that it has been available to WHOI investigators, we have made a number of adaptations,
some as simple as changing the defaults. We encourage potential users of the system to use
VOICE in its present form, or to adapt it to different PCs or boards. Listings of all sources,
the executable VOICE program and required files are available on floppy disk upon request.

21

References

SKY321-PC & 320-PC (rev.4) Reference Manual. 1987. Document #321-PC-
RM-87-1.2 SKY Computers, Inc., Lowell, MA 01852.

DASH-16/16F Manual. 1986. MetraByte Corporation, Taunton, MA 02780.

Disk Operating System Technical Reference, Version 2.10. 1983. IBM Personal
Computer Language Series. Microsoft Corp.

Kliewer, B. D. 1988. EGA/VGA, A Programmer’s Reference Guide. Intertext/McGraw-
Hill, New York.

22

Name
main
voice.h

keydefs.h

blkbox
boxes
calcstep
chanenv
chcolor
clearhlp
clearmsg
cmdopt
dashget
dashin
dashoff
delmag
endint5
erase
getkey
getmem
handle
helpvce
kayhdr
keyopts
labelv
lcursor
linecurs
messages
movefull
movetop
movtolft
movtorit
onechan
putcurs
putlcurs
putrcurs
putft
putmag
review
savscr
scrntop

File

voice.c
voice.h

keydefs.h

labelv.c
labelv.c
calcstep.c
chanls.c
change.asm
helpvce.c
messages.c
cmdopt.c
dashin.c
dashin.c
dashin.c
delmag.c
endint5.asm
erase.asm
keys.c
getmem.c
handle.asm
helpvce.c
kayhdr.c
keys.c
labelv.c
Icursor.c
lcursor.c
messages.c
move.asm
move.asm
bounds.c
bounds.c
chanls.c
putcurs.asm
putlcurs.asm
putrcurs.asm
labelv.c
putmag.asm
review.c
5avSCr.C
screen.asm

Source Code Listings

Description

Main program

Header file for main program voice.c

Header file for modules getkey, getmem, keys, lcursor, review

Draw a black and white box on screen
Draw several columns of color boxes

Find step to use in memory buffer read
Display spectrogram and signal amplitude
Establish color palette

Erase “help” window and contents

Erase text from message center box
Handle command line options

Get offset for current data

Start data acquisition via DMA

Stop DMA data acquisition

Delete amplitude clipping light

End DMA end-of-page interrupt condition
Erase contents of lower window

Identify key hit by user

Set up for display of memory buffer data
Handler for DMA end-of-page interrupt
“Help” window text

Prefixes saved data with Kay Sona-Graph format 5500
Enable interactive key options

Draw color code boxes and annotations
Enable movement of cursors

Draw a vertical white line (cursor)

Text for message center box

Move data column in both windows to left
Move data column in top window to left
Find data start and end addresses

Find data start and end addresses
Display one frequency channel

Draw a vertical line cursor to screen
Draw a left-bracket cursor to screen

Draw a right-bracket cursor to screen
Write sampling frequency value to screen
Draw signal amplitude display to screen
Read/display data file saved by VOICE
Save data to disk file

Draw spectrogram to top window

23

g

setscr
showdat
totmsl
txtprep

screen.asm
showdat.c
totms.asm
txtprep.asm

Reset palette to default colors

Display spectrogram for expand modes
Move data from DMA buffer to TMS memory
Configure screen to allow graphics text

24

/* Copyright @ 1989 by A. Martin and J. Catipovic
A1l rights reserved.

VOICE.C --

A spectrogram softvare package designed for use with a PC-AT
personal computer (with hard disk) that is equipped with an EGA graphics
board, a Sky321-PC signal processor board, and a NetraByte DASE-16
A/D board.

For a full description of the spectrogram instrument, a user’s
gauide, and a description of this software package, see:

VOICE -- A Spectrogram Computer Display Package, by A. Martin,
J. Catipovic, and P.L. Tyack, 1989. WHOI Technical Report WEOI-90-22.

LRSI LR 1222])

This version uses the TMS HSNOS.

HSMOS requirements:
sintab.dat and fftcolor.320 must be available at runtime.
Compile as a large model, with hsmos.h and hsmos.def
Link with S32ASM.0BJ, and with /stack:32767

¥B: To change the TMS board address for data memcry, change:
= hsmos.def
- tmsaddr variable in voice.c

VOICE compile requirements:

voice.h

vce.lib - all object code for this package
s/

/ " sesnstes/

ginclude "voice.h"

main{argc,argv)

char *argv(];

{

short i,j,k,n,m;

int optior, dtyp, tmark, numchan, dmapgtmp, backoff;
unsigned int clrbits, dashtmp = O;

float fmax, ftmp;

time_t start,finish;

absptr = (int s)absaddr;

tknt = cycle = i = pnp =g = Q;
envelope = j = 0;

speed = gain = O;

1p1 = locparmi;

1p2 = locparm2;

dtyp = 0;

tmark = O;

scrntime = 0.0;

/+INITIALIZINGe/

/*pick up the command line optioms, if any, plus some global
initializationse/
3i2((option = cmdopt{argc,argv)) < 5)
move ®= movefull;
else
move * movetop;

/%Set up the byte count to back up before sending data to tms boards/

25

backoff = 512;
clrbits = Oxfffc; /screate a number divisible by 4/

if(option == 8)
dtyp = 2; /esaved output is colorcode values, not data -- not enableds/

/#calculate sampling frequencys/
fmax = (1000./((double) (knum1 * knum2)))/2.0;

/#clear THS data memorys/
tusptr = (unsigned ¢)tmsaddr;
enable_poO;
for (im0; i<32000; i++)
tusptr[i] = 0;

/%load in fft program, sinetable and color level tables/

if(option == 2) /* 2 sample channels - not enabled =/
{
/#1file("ftcolor2.320",0,1500 ,PMEN) ; =/
nmchan = 0x10;
}

else if(option == 1) /* 4 sample channels - not enabled */
{
/elfile("ftcolox2.320",0,1500,PHEN); «/
numchan = 0x10;
}

else
{
1file("fftcolor.320",0,1500,PHEN); /+1 sample channels/
numchan = 0x00;
}

1file(“sintab.dat", locparmi(2],locparmi {2]+2048, DMEX) ;
writdm(locparm1[5],edge,32);

/eurite labels and annotations to the screent/
labelv(option);

/eurite sampling frequency to the screene/
putft (fmax,scrntime ,option);

/eset up for timing ticks on screen displaye/
now = (double)((newsecsclock())/ctick);

/+EXECUTING*/
if(option < 10)
dashin(absptr ,numchan); /+ get analog datas/
else

revies{option); /edisplay stored binary file, and exite/

dashtmp = dashget();

/ Top of Read-Execute Loop /

/*set up for keyboard interruptss/
while(1){
if(kbhit ())
keyopts (numchan,option,dtyp);

/*load starting addresses of input data, output, sintable, color lookup

into 30 - 35 of Program memorye+/
writpm(30,1p1,12);

26

/%Use an HSHOS routine to start processing+/
strt320(30) ;
[]
/* get the address of the input array so that the TMS can find ite/
dashtup = dashget();
dmapgtup = dmapage;

/* ’backoff’ must be subtracted from the current offset, so the resulting
pointer may be on the page before dmapages/
while((dashtmp & clrbits) < backoff)
{
dashtmp = dashget();
}
dashtup * (dashtmp ~ backoff) & clrbits;

absaddr = ((long)dmapgtmp)<<28; /¢ this defines the segmente/
absptr = (unsigned s)(dashtmp | absaddr);/edashtmp is the offsets/

/%here’s the pointer for the THS boarde/
tasptr = (unsigned *)((1p2[0]<<1) | tmsaddr);

/#download the data array to memory in the TNS boarde/
enable_pO;
tastut (absptr, tusptr,ptknt, gain);

/edisplay timing ticks across top of screens/
if((double) ((newsecsclock())/ctick) '= now)
{
now = (double) (newsec/ctick);
tmark = 1; /+make a time tick on the screens/
}
else
tmaxk = O;

/*display channels of frequenciese/
channel(tmark) ;
if(cycle >= 8)
{
move() ;
cycle = 0;
}

for (i=0; i<speed; i++); /econtrolled by <-,-> keys */

/%Read the results from the TMS320 into output array fftvals/
readdm{1p2{1],fftval ,fftout);

/*swap the location parameterss/
1tmp = 1p2;
1p2 = 1p1;
1p1 = 1ltmp;

/euait for THS320 to finish - bit 3 is set in STCREG(IOBASE) +/
while((inp(IOBASE) & 0x08) == 0);
h1t320(); /+ THS board is all done for this passe/

} /%end of read and execute loop+/
}
/ /
ALl sses/
/*VOICE.B

An include file for voice.c.

27

./
/ /
/+ include filess/

#include <stdio.h>
#include <stdlib.h>
#include <graph.h>
%include <comio.h>
$include <math.h>
#include <time.h>
$include "hamos.h"
#include "keydefs.h"

/ /
/+detinese/

#define MAXSIZE 512

$define BUFSZ 20

/ /
/e¢declare functionse/

unsigned int chaneav();
unsigned int onechan();
unsigned int twochan();
unsigned int scratop();
unsigned int scrabot();
unsigned int movetop();
unsigned int movefaull();
unsigned int handle();
unsigned int totms1();
unsigned int totms2();
unsigned int review();
unsigned int (smove)(), (etmstat)(), (schannel)();
unsigned int dashget();
int dashin();

/ /
/sdeclare and define some global variables*/
/+for initializations dependent on command line options, see cmdopt.cs/

int #lpl, ¢lp2, ¢ltmp;

int ftsize,fftout,ptknt,inkey,tknt,lcol,rcol;

int dmapage, dmakant, lineknt, doffinc, knumi, knum2;
int f£ftval [MAXSIZE],sintab(2048];

int gain, speed, cycle, kay, rknt = O;

unsigned int edataptr, soldptr, *absptr, stmsptr;
unsigned int envelope, doffset, endoff;

unsigned long int newsec, showaddr;

float tic; /%user’s choice of time mark spacings/
double scrntime, now;

clock_t clock(void);

clock_t ctick;

FILE ¢stream;

char f£idid[16]; /efilename to which data are saveds/
char newtid[15];

char £idin(BUFSZ]; /sbinary input data (instead of analog)e/
char colori[266],color2[256],color3[256] ,color4[256];

char curcolor;

int locparmi(6] = {2048,6144,12000,0,0,30000};

int locparm2(6] = {4096,8192,12000,0,0,30000};

unsigned long int absaddr = 0x70000000, tmsaddr = 0xD0OOO0000;
int edge[16] = {0x0001, 0x0002, 0x0004, 0x0008, 0x0010,

28

020020, 0x0040, 0x0080, 0x00c0, 0x0100,
0x0140, Ox7£fe,
o, o, 0, 0};
int colors[16] = {0, 8, 33, 1, 9, 43, 15, 47, 61, 45,
37, 0, 63, 63, 63, 63};

/ /
/ /
/*KEYDEFS .Re/

$define IF 0x100

$define X _UP 72 | IF
#define X DOWE 80 | XF
#define K_LEFT 75 | IF
8define K_RIGHT 77 | XF
8define K_PGUP 73 | XF
$define K_Fi 69 | XF

|
8define K_F2 60 | XF
8$define K_F3 61 | XF
8define K_F4 62 | XF
8define K_DEL 83 | IF
$define K_ESC 27
S8define K_RETURE 13
8define K_SPACE 32

/ethe following are values for lowercase letterss/
$define K_F 102
#define K H 104

Sdefine K X 120

8define K_S 115

$define K 109

/ /
/ /
/* BOUEDS.C

bounds.c -- These functions define the start and end locations of a
portion of data (in the memory buffer) that has been delimited with
line cursors by che user.

Variables to be defined for getmem.c :
again - kount of pages to be read (NB: pages are 4,5,6,7,8,9
with beginning page containing data for the last page,
so that ’again’ for 6 pages = 6 for 7 iterations, 0-6)
pagenow - starting page
pagelast- ending page
doffset - starting offset
endoff -~ last offset
./

$include <stdio.h>

movtorit (tmpoff,loopknt, jknt, iknt ,page)
unsigned iat stmpoff, jknt, *page;
int loopknt, iknt;
{

unsigned int oldi;

int 4, J;

/*Bote: we must multiply offset ¢ lcol ¢ 8 using nested loops;
else iknt is too big to fit into an integers/

29

iknt *= §; /¢ 8 pizels per column move ¢/
for(§ = 0 ; j < jknt ; j++)
{

for(i =0 ; i < iknt ; i++)
{
oldi = stmpoff;
stmpoff = stmpoff + 1;
/onow mast see if tmpoff has gone from 85636 to Oe/
if(stmpoff < o0ldi)
{
stupoff = O;
spage = *page + 1;
if(*page > 9) spage = 4;
==loopknt;
}
}
}

return(loopknt);
}

/ /

movtolft (tmpoff,loopknt, jknt,iknt ,page)
unsigned int *tmpoff, jknt, *page;
int loopknt, iknt;

{
int i, j;
iknt = §;
for(j =0 ; j < jimt ; j++)
{
for(i = 0 ; i < iknt ; i++)
{
stmpoff = etmpoff - 1;
if(etmpoff == 0)
{
~=loopknt;
spage = ¢page - 1;
if(epage < 4) *page = 9;
stmpoff = 65535; ‘
}
}
}
return(loopknt);
}
/ /
/ /
/*CALCSTEP.C

calcstep.c == calculates incremental step to be used when reading data
from memory buffer for options ’save’ and ’prior’ so that
the resulting display will £ill the screen exactly.

*/

/ /

$include <stdio.h>
#include <stdlid.h>

30

calcstep(kat)
int knt; /¢ ’again’ in getmem.c ¢/
{
extern unsigned int doffset, endoff;
int pagetmp, pageknt;
long umsigned int tmpstep, itmp;

pagetmp * kunt;
if(pagetmp == 0)
{

tapstep = ((unsigned int)max(endoff,doffset) -
(unsigned int)min(endoff,doffset));
topstep = (((float)tmpstep)/480.);
}
else if(pagetmp > 0)
{

itap = 65536 - doffset;
tupstep = endoff;

/* see if the two partial pages added together make up more than
a whole page (64k)s/

pageknt = O;

tupstep *= itmp;
if(tmpstep > 685536)
{

pageknt = 1;
tupstep -= 65536;
}

tupstep = ((((float)tmpstep)/480.) + 0.5) + (pageknt*138);
12(pagetmp > 1)

{
tupstep += (pagetmp-1) ¢ 138; /¢ for dmaknt > 2 ¢/
}

return(tapstep);
}
}
/ /
/ /
;CHANGE . ASK

;¥rite directly to the EGA video RAN. This routine assumes the video driver
;is IBN compatible and supports EGA mode 108 (640x350, 16 colors)

-TEXT SEGNENT BYTE PUBLIC ’'CODE’
-TEXT EKNDS

-DATA SEGNEET WORD PUBLIC ’DATA’
-DATA EKNDS

CONST SEGNENT WVORD PUBLIC ’CONST’
CONST KEDS

-BSS SEGNEST WORD PUBLIC ’BSS’
-BSS EEDS

DGROUP GROUP CONSY, _BSS, _DATA

31

ASSUME CS:_TEXT, DS:DGROUP, 8S:DGROUP, ES:DGROUP
-TEXT SEGNENT
PUBLIC _chceolor

~chcolor PROC FAR
H bl holds palette register number

H bh holds color value to be used
push bp
mov bp,sp
push ss
push si
push dai

»ov di, [bp+€]
mov ax, [bp+8]

mov ds, ax
mov dh,0
mov ¢x,16 ;loop counter
cloop:
mov ah, 10h ;set up for BIOS call
nov al,0
nov bl, dh ;Tegister to set
mov bh, ds:[di) ;color value
int 10h ;enter the interrupt
inc di
inc di
inc dh

loop cloop

pop dai
Pop si
pop [1)
pop bp
ret

~chcolor ENDP

.TEXT ERDS

END

/ /

/ /
/+CRANLS .C

¢hanls.c -- a collection of routines which control the screen display
of spectrogram data and signal amplitude vaveforms ¢/
/ /

unsigned int scrmtop();
$include <stdlib.h>

/ /
/¢ default display s/

/¢ chanenv.c -~ displays ome channel of frequencies plus signal amplitude.
Hay also be invoked with command line options -fie or ~fid. Width of
waveforn envelope is determined in main and implemented by move.ce/

/ /

32

chanenv(tick)
int tick;
{
extern int ptkat;
extern unsigned eabsptr;
extern imt fftval(), cycle, gain;
extern char colori[]);
extern unsigned int envelope;
int i,3;
envelops = i = j = 0;

/*find the signal amplitudee/
for(i =0 ; { < ptimt ; i++)
if(envelope < absptr[i]) eavelope = absptr{i);

envelope = (envelope - Ox7f£ff) >> 8;
/* envelope = (envelope - Ox7£ff) >> (8-gain); or use this to include gains/

for(i =0 ; i < 128 ; jies)
color1[127 - i] = (char)fftvalli);

if(tick)
{
for(i = 124 ; 1 < 128 ; i++)
color1{127-i) = 63;
}
color1[127] = 63; /* horizontal bar dividing display screen »/

scratop(colori,cycle);
putmag{kenvelope,cycle);
cycle++;
}
/ /

/¢ onechan.c -~ displays one channel of frequencies s/

/ /

onechan(tick)
int tick;

{
extern unsigned sabsptr;
extern int fftval[l, cycle;
extern char coloril]);
int 1,j;
i= j = 0;

for(1 = 0 ; 1 € 128 ; i+¢)
coloxrt1[127 ~ 1] = (char)fretvalli);

if(tick)
{
for(4 = 124 ; 1 < 128 ; i)
color1{127~i] = 63;
}
color1[127] = 63; /» horiszontal bar dividing display screen ¢/
scratop(colori,cycle);

cycless;

33

/ /

/% twochan.c -- displays two channels of frequeamcies (option 2, command
line option -12).e/

/ o/

tvochan{tick)
int tick;
{
extern int fftvalll,cycle;
extern char colort(],colox2(];
int i,j;
j=o0;
fox(i =0 ; i €128 ; i+)

{
color1[127-1i] = (char)fftval(j++];
color2[127-1) = (chax)fftvallj++];
}

if(tick)
{
for(i = 124 ; i < 128 ; i)
color1[127-i] = @3;
}

color1{127] = 63; /¢ horizontal bar dividing display screen »/

scratop(colori,cycle);

scxnbot(color2,cycle);

cycle+s;
}
/ /
/ /
/+CHDOPT.C

cadopt.c - picks up arguments entered on the command line at runtime
and implements the user choices. It also does imitializing
of global variables not initialized in voice.h

Command line options:

1) ~f4 = display 4 channels of sample frequeacies - not emabled

2) -2 = display 2 chamnels of sample frequencies - not emabled

3 ~f1 = display 1 chamnel of sample frequemcies

4) ~fle = 1 chammel of frequeacies plus full width of eavelope

5) ~f£1b = 1 chammel of frequeacies, eavelope a small bar graph (default)

8) -8 = writes files of saved color-ceded fft values (processed data). - mot emabled
-k = gaved files of rav data are ia "Kay" 5600 format (headers)
-t 8. = interval tics (< || == > eme sec) for display om screea
=c¢ = change colors via data file Coler.dat
-cl = change contour levels via data file Levels.dat
-s $ = set sampling frequeacy. Defsult is the maximsm, SOkEs.
-n & = awmber of words to sead to the THS beard
-i 8 = gize of imcremental step for display of ’‘saved’ data

10) -r<spaced><somefileid>= review i-chammel data

11) -r2<ispaced><somefileid>s review 2-chanmel data - pot yet implemented

»/

/ /

Sinclude <stdio.h>
sinclude <stdlib.h>
$include <time.b>

34

/ /

cadopt (axrge ,axgv)
char seargy;

extern char fidin(;
i extern unsigned int omechan(), chanenv(), twochan(), fourchan(), (schannel)();
extern unsigned int doffinc;/edisplay incremente/
extern unsigned int totmsi(), totms2(), (stmsfmt)();
extern int edge(], colors(;
extern int knumi, knum2, ftsize,fftout, ptimt, kay;
extern clock.t ctick;
extern float tic;

FILE ofp, efopan();

char p1,ep2,kntpt(3]), newinc[4];
int n.m;

int dati,opt,khz,x,nx,ny,flag,i;

/* Default valuess/

opt = §;

channel = chanenv;

doffinc = 138+6;

Xnuml = 04;

knum? = O§;

ftsize = 256;

fftout = ftsize;

ptknt = ftsize/2;
. tasfmt = totmal;

ctick = CLK_TCK;

tic = 1.0;

kay = O;

shile(-~argc > 0)
{
argves;
again: svitch(argv([0][0])

case ’=’:
argv[0])++;
goto again;
/ecase ’w’:
opt = §;
break;s/
case ’k’:
kay = 1;
break;
case 'n’:
Pl = katpt;
it (argc >= 2)
{

argve+;

arge--;

p2 = argv(0]);

shile (ep1++ = ep24+);
}

ptknt = atoi(kntpt);
it (ptkat < 0)
pthnt = 0;
. else if (ptknt > ftsize)
ptknt = ftsize;
break;

35

case 'i’:

pl = newinc;

it (argc >= 2)
{
argvé+;
arge=-;
p2 = argv(0];
while (*ple++ = »p2++);
}

doffinc = atoi(newinc);
break;
case ’r’:
/¢ if(argv{0][1] == >1’)
{

opt = 10;

tasfut = totmsi;

fftout = ftesize;

}

else if(argv[0][1] == 27)

{
opt = 11;
tusimt * totms2;
fftout = ftgize ¢ 2;
} v

opt = 10;
tmsfmt = totmsl;
fftout = ftsize;
pl = fidin;
if (arge >= 2)
{
Argves;
arge--;
p2 = argv(0];
while (epi++ = sp2++);
}
break;
case ’s’:
khz = atoi(argv[i]);
/*check for a decimal -- not legals/
if((atof(argv(1])) > khz)
{
printf("\ns+Sampling frequency must be an integer.\n");
printf(" Please try again.\n");
exit(0);
}
/+trap for sampling value greater than 50¢/
if((khz > 50) || (khz == 0))
{
printf("\nesSampling frequency must be a kilohertz value between 1 and 50.\n");
printf(” Please try again.\n");
oxit(0);
}

flag = 0;

shile(flag == 0)

{

/#find number which divides into 1000 to give khze/
x = 1000/khz;

ax = 0;

ny = 0;

/enos factor out the x =/

i=0;

36

for(i = 2 ; i < x ; i+s)
{
12 (x%1))
{

nx = x/i;
ny = x/nx;
}
if(nx >= 2 &2 ny >= 2)
{
flag = 1;
knuml = nx;
knum2 = ny;
break;
}
}
++¢khz;
}
break;
case ’t’:
tic = atofargv[i]);
ctick = CLK_TCKstic;
break;
case ’f’:
/oif(argel0] [1] == >27)
{

opt = 2;

channel ® twochan;
tasfat = totms2;
fftout = ftsize & 2;
Yo/

if (argv[01[1] == 11’)
{
if (argv[0][2] == 2¢?)
{

opt = 4;
channel = chanenv;
}
else if (argv[0][2] == ’bp?)
{

opt = §5;
channel = chanenv;
}
else
{
opt = 3;
channel = onechan;
}
fftout = ftsize;
tusfmt = totms];

}
break;
case ’c’:
12(axgv (0] {1] == 7¢’)
{
fp = fopen(“colors.dat","r");
if(fp == NULL)
{
printf("Unable to open file Colors.dat.\n");
exit(~-1);
}
else /*colors will accept up to 16 valuese/
{
n=0;

37

while(facanf(fp,"Ld",kdatl) != EOF)
{
colors{n] = dati;
a¥d;
}
fclose(fp);
}
}
elsge if (axgv[0]1{1] == 1)
fp = fopen('levels.dat","r");
if(fp == NULL)
{
printf("Unable to open file Levels.dat.\n");
oxit(-1);
}
else /sedge will accept up to 16 valuess/
{

n=0;
while(fscant(fp, " Yx",kdatl) != EOF)
{

edge(n] = dati;
né+;
}
2close(Lp);
}
break;
}
}
return(opt) ;
}
/ /
/ /
/*DASEIR.C

dashin.c - routine to read up to two channels of DMA data. User may
input parameters addl and add2 to determine sample frequency
through the runtime command line. On each restart after a
memory display, the starting address is page 7, offset O.

+/

/ /

ginclude <graph.h>

#include <stdio.h>

#include <conio.h>

8define BASE 0x310

8define NUX BASE+2 /oused to establish number of channelss/
8define STATUS BASE+S

8define CONTROL BASE+9 /eallows IRQS to be sete/

$define CTREN BASE+10 /*counter emables/

8define CTRO BASE+12
$define CTR1 BASE+13
8define CTR2 DBASE+14

$define CTRCONT BASE+1S /ecounter controls/
Sdefine DMACHANEEL 1
8define DNANODE Ox45 /201000101 for single mode select, address

increment,B0 auto reload of registers,write
transfers,channel 1 selecte/

$define BASEREG 2
$define COUNTREG 3
8define PAGEREG 0x83 /oDMA page register 1e/

/esoceve seses /

38

dashin(buffer,chan)
int chan; /¢choice of number of channels (6/89 - max is 2)e¢/
int sbuffer;

{
int i,j, dmabasel, dmabaseh, dmacountl), dmacounth;
int estatptr;
extern int knumi,knum2; /+for sampling frequency optione/
extern int dmapage;
extern int dmakmt;
statptr = (ints)STATUS;
dmaknt = 1;

/¢ set up the DMA parameters ¢/

dmabasel = 0; /estart at the beginning of a page ¢/
dmabaseh = O;

dmapage = 7; /+this NUST be 7; pages = 7,8,9,4,5,6¢/
dmacountl = Oxff;

dmacounth = Oxff; /etransfer 64k pts =/

outp(CTREN, 0); /edisable data acquisition 3/

/*program the DMA chip before starting DASB boarde/
outp(11, DMAMODE);
outp(12, 0);
outp(BASEREG, dmabasel); /estart of memory addresss/
outp(BASEREG, dmabaseh);
outp(COUNTREG, dmacountl); /*number of bytes to transfers/
outp(COUBTREG, dmacounth);
outp(PAGEREG, dmapage); /*hereafter dmapage is rewritten in handle.asms+/
outp(10, DMACHANNEL);

/+DASE board parameterss/

outp(CONTROL, OxD7); /* enable interrupt 5 s/
outp(NUX, chan); /* get 1 or 2 channelss/

. outp(CTRCORT, 0x74); /¢ ctr 1, mode O, write numcnt +/
outp(CTR1, knumi); /¢ for sampling frequency */
outp(CTR1, 0);
outp(CTRCONT, Oxb4); /% ctr 1 divides by 4 »/
outp(CTR2, knum2); /* for sampling frequency «/
outp(CTR2, 0);
outp(CTREE, 01); /* start data acquisition »/
handle(); /% enable interrupt handlers/
return(0);

}
/ ssens /
dashof£() {
outp(CTRES,00) ; /eturn off the counter enable */
outp(0x0e, 0000); /% reset the DMA chip */
outp(0x0d, 0000);
outp(OxOf, Oxff);
}
/ /

/*get the most recent address at which data has been received, and
return this offset to use in address calculations. ¢/

unsigned int dashget()
* {
unsigned i,j;
j * (Cinp(BASEREG)) | (inp(BASEREG) << 8));

return(j);

}

39

/
/
/«DELNAG.C

delmag.c -- deletes clipping light; activated by key K_DEL
./

~ O~

$include <stdio.h>
$#include <graph.h>

delmag()
{

int i, txtcolor;

txtprep();

txtcolor = _gettextcolor();
-settextcolor(_getbkcolor());
_settextwindow(18,61,28,62);

for{ im1 ; i <= 10 ; i++)
{
-settextposition(i,1);
—outtext(" ");

}

_settextcolor(txtcolor);
}

/ /
/ /
;ENDINTS.ASH

;endint5.asm -- ends the interrupt condition invoked by handle.asm

EXTRE keep_cs:near
EXTRE keep_ip:near

.TEXT SEGMENT BYTE PUBLIC ’CODE’
~TEIT ENDS

-DATA SEGNENT WORD PUBLIC °DATA’
.DATA ENDS

COBST SEGMEST WORD PUBLIC ’'CONST’
CONST ENDS

.BSS SEGMENT WORD PUBLIC ’BSS’
.BSS ENDS

DGROUP GROUP CONST, _BSS, _DiAT4
ASSUME C8:_TEIT, DS:DGROUP, SS:DGROUP, ES:DAROUP

~JEIT SEGHENT

PUBLIC _endints

-endints PROC FAR
push bp
mov bp,sp
push ss
push si
push di

cli ;disables interrupts(int flag set to 1)

40

push ds
mov dx, WORD PTR keep_ip ;prepare to restore offset
mov ax, WORD PIR keep_cs
wov ds, ax ;prepare to restore segment
mov ah, 25h ;function to set an interrupt vector
mov al, Odh ;number of the vector
int 21h ;now the vector is reset
POP ds ;restore ds
sti ;clear flag to enable interrupts
pop di
POP si
pop s
nov sp, bp
POP bp
ret
-endintb endp
_TEXT EEDS
END
/ /
/ /
;ERASE .ASH
jerase.asm

;Write directly to the EGA video RAN. This voutine assumes the video driver
;is IBM compatible and supports EGA mode 10H (640x350, 16 colors)

;erases contents of bottom window (screen-width waveform)
; erase(text column number)

-TEXT
_TEXT

_DATA
-DATA

COEST
CONST

_BsS
_Bss

SEGMEST BYTE PUBLIC ’CODE’
ENDS

SEGMENT WORD PUBLIC ’DATA’
EEDS

SEGMEET WORD PUBLIC ’'COEST’
ENDS

SEGNEFT WORD PUBLIC ’BSS’

ENDS

DGROUP GROUP CONST, _BSS, _DATA
ASSUNE CS:_TEXT, DS:DGROUP, SS:DGROUP, ES:DGROUP

-TEXT

PUBLIC _erase

-erase PROC FAR

push bp

mov bp,sp

push ss

push i

push di

push ds

nov dx, 3ceh ;set video write mode 2
mov al, §

out dx, al

inc dx

mov al, 2 ;video mode 2

41

[———

out dx, al
nov ax, 0a019h ;point to top left acreen cornmer
mov es, ax

;set up bit mask register

mov dx, 3ceh ;point to address register

mov al, 8 ;bit mask register

out dx, al ;address the register .

inc dx ;point to data register

mov ax, 80h ;mask out all bits except dbit 7

out ‘dx, al ;send data to mask register
;get the bar height to be plotted

nov ax, 128

nov dx, 80

mul dx

add ax; 10240

add ax, [bp+6]

mnov dx, ax

; put the color into the mask register

nov dx, 0 ;color is bdlack
;got the column number where cursor is to be written
mov cx, [bp+6]
mov bx, cx ;load with screen columm number to srite to
add bx, 10240 ;top of bottom window
;drav a pixel
coll: mov al, es:([bx] ;2ill the latch registers i
mov es:[bx], al ;draw the pixel
mov byte ptr es:[bx], 00
add bx, 80 ;point to pixel delow
cmp bx, dx . *
31 coll
colb: mov al, 41 ;pixel color
mov byte ptr es:[bx], 00
add bx, 80 ;point to pixel below
cmp bx, 20560 ;== column bottom
j1 cold
pop ds
pop di
pop si
pop ss
pop bp
Tet
-erase ENDP
-TEXT ENDS
END
/ / *
/ /
/+GETHEN .C
getmem.c --

Sets up for the display of data stored in mesory dy the
DA in a buffer up to 384k large. Start~and-end addresses (page-offset)
and count of pages of input data are calculated; then a display loop

42

_

increments the input addresses and calls showdat to display the processed
data at a resolution calculated to exactly fill the screen window.

BB: The DHA controller has been stopped in the calling program. After
each exmmination of memory, it is restarted by dashin() with page set

to 7, offset set to 0.

Time ticks are displayed at the top of the window for every second,
with every tenth second in double length; if window width contains
less than 4 seconds of data, every tenth of a second is marked with
a half-length tick. BB: The time ticks in the zoom displays reflect
the time span required for display of the selected data in real time.

Operations available:

zZooms - sequential
redisplay of prior zoom screems (up to 10 levels)
save delimited data to file
zoom; hit ’s’ key to save full screen of data
move cursors; save data; hit enter to view full screen of saved data
move cursors; save data; move cursors; hit enter to see subset of saved data
mOove cursors; save data; move cursors; save data
note: after a ’save’, the cursors may be moved either toward the
screen center or tovard the side margins
./
/ /

8include <stdio.h>
#include <graph.h>
#include <stdlib.h>

#include "keydefs.h"
#include "fcntl.h"
#include “hsmos.def”

$define O_RAW O_BIBARY

#define enable_pl wstcr((rstcxr()&STC_RUN) | STC_DPAGE1)
#define disable_edm wstcr(rstcr()&STC_MEM_MASK)

8define enable_p0 wstcr((rstcr()&STC_RUN) | STC_DPAGEO)

#define WEBITE 319
&define BLACK 256
8define WIDE 828

unsigned int dashget();
unsigned int showdat();
unsigned int (emove)();
void putcurs();

int getkey();

/ .y

getmem(choice, jump)
int choice; /edisplay option set in cmdopt (8 of channels) - needed
to funnel into showdat.cs/
int jump; /einitial offset increment factor ¢/

extern char curcolor;

oxtern unsigned int doffset, doffinc, endoff;

extern long unsigned iat showaddr;

extern int dmapage, knumi, num2, 1lcol, rcol, cycle, ®absptr;
extern int inkey; /#value is established by calling functions/
extern int dmaknt; /einitialized to 1 in dashine/

extern int gainm;

extern float tic;

43

/%local variablese/
static umsigned int strtpage, lstpage, firstoff, lastoff, oldstep;
static int kounter, pushimt;
static strect pushpop
{
unsigned int pge;
unsigned iamt imcr;
unsigaed iat ofset;
unsigned iat offlast;
int pgkat;
Flevels{10] ,euhich;

double afreq;

unsigned inmt step, pagenocs, pagelast, strtbyte, eadbyte;
unsigned int oldoff, tmpl, tmp2, tmpd, offseta;

int txtcolor, locatiom, movkat, firstcol, lastcol;

int i, j, mark, knt, loopmo, kt, sek, agaia, reply;

int temloop, teath, deci, ktem, place, marktea;

/einitializinge/

deci = teath = 0;

place = tenloop = 1;

reply = O;

firstcol = O;

lastcol = 680;

loopno = O;

kten = kt = 1;

again = 6; /edetanlt for 6 pages of rav datas/
oldoff = O;

sek = 1; /otime ticks == either 1 or 0 o/
step = (unsigned) jump;

sfreq = (1000000./((double) (knumi ¢ h-z))?; /%hezze/

mark = (int)(((sfreq¢2.0)/(float)step) ¢ tic); /etimeticks calculatiome/

/ /

/esevsdesine the number of pages to be read and displayed, and
the page and offset where data retrieval is to beginesesse/
/e
Variables to be defimed: :
again - count of pages to be resd (NB: pages are 4,5,6,7,8,9
with beginning page containing data for the last page,
so that ’again’ for 6 pages = 6 for 7 iteratiocms, 0-6)
pagenov - starting page
pagelast- ending page
doffset - starting offset
eadoff -~ last offset
o/

switch (imkey) {
case k_N:
/oThis case is ALVAYS called first, and sets up the basis for
variable values ia the rest of the functione/

/eget currest page & offset valuese/
pagelast = (unsigned)dmapage;
offseta = dashget();

endoff = offseta;

it (dmaknt >= 7)

/enormal situatioa =~ a full 6 pages of braand new datae/
{

again = 6; /eloop comtrol, O - 6 o/

pagenow = pagelast;

doffset = offaeta;

step = step & Oxfffc; /vevenly divisible by 4¢/
}

else
/%less than 6 pages of new data. Either
4) the user has hit the ’m’ key so soon after the previous
retrieval that the DHA has not been able to refill all
six pages, or
B) this is the start of the session, and 6 pp have not yet
been filled. o/
{
again = dmaknt-1;
pagenow = 7;
doffset = O;

/omust redefine ’step’ so that display fills the screen; step must be
less than (138¢6)s/
step = (138 ¢ again) + ((offseta)/480);
step = step & Oxfffc; /eevenly divisible by 4e/
doffinc = step;

}

/%save these parameters for aubsequent displays of this memorye/
pushknt = O; /+initializes at each exit from running displays/
which = glevels[pushknt];

shich->pge = pagenow;

which->incr = gtep;

which->ofset = doffaet;

which->offlast = endoff;

which->pgknt = again;

break;

case K_ESC:

/* display data from the previous screen ¢/

if(pushknt > 0)
{
which = Rlevels{pushknt-1);
~=pushknt ;
if(pushknt == 0) messages(4);
}

else
{
which = 2levels[pushknt]);
nessages(4);
}
pagenow = which->pge;
step = ghich->incr;
doffset = which->ofset;
endoff = which->offlast;
again = which->pgknt;

break;
default:
/* this takes care of inkeys (set inside lcursor), which may be
<enter> “zoom" or <s> “save to file” ¢/

/*Here we adjust address and page kount to match cursor moves.
For iterative zooms, page and offset are calculated from the
start of the previous zoom, NOT from start of buffere/

/edefaultee/

strtbyte = firstoff;
endbyte = lastoff;

45

pagenow = strtpage;
pagelast = lstpage;
again = kounter;

movknt = lcol;/¢ BB: ’movknt’ is the number of cursor moves ¢/
again = movtorit(&strtbyte,again,oldstep,movknt,&pagenos);

moviknt = 60 - rcol;
again = movtolft(&endbyte,again,oldstep,movknt,pagelast);

doffset = strtbyte;
endoff = endbyte;

/+find the incremental step to be used, and (maybe) store
all the screen display parameters which have been newly
calculated in “levels” s/

step = calcstep(again);
step = step & Oxfffc; /eevenly divisible by 4e/

/+if step increment is < 20, there are rounding up or down
problems so that the resulting screen display is not valid.
HBowever, a “save" of data is still possible because the
doffset and endoff will be correct. e/

i£(inkey != K_S)
{
if(step < 20)
{
reply = messages(2);
if(reply == {)
inkey = K_S;
else
{
messages(9);
/epick up values from pravious displays/
dotfset = firstoff;
endoff = lastoff;
pagenov = strtpage;
again = kounter;
step = oldatep;
}
}
else
{
/estuff zoom parameters imto structure array so
they will be available for the redisplay options/
if(++pushknt > 9) pushknt = {;
shich = klevels[pushknt];
which->pge = pagenow;
shich->incr = step;
shich->ofset = doffset;
which->offlast = endoff;
shich->pgknt = again;
}

}
} /*end of switchse/
doffset = doffset & Oxfffc; /eevenly divisible by 4¢/

/esseesscessssesind of defining addresses and page countseeesessesssses/

/

" e seses sseceen/

/*Saving to filee/

46

if(inkey == K_S)
{
delmag(); /edelete clipping lights/
savacr(pagenov ,doffset ,endoff,again,step);
dmaknt = 1;
retura(0) ;
}

/%do BOT save any of the parameters belows/

/*Save some static variable values for the mext call to this
function. Done here because pagenow and doffset are
different at bottom of Display Loop from at top /

firstoff = doffset;
lastoff = endoff;
strtpage = pagenos;
1stpage = pagélast;
kounter = again;
oldstep = step;

Start of Display Loop

/*Loop from starting place in first page until:
the same place is found, for a full € pp
or
last offset (endoff) on last page is hit (< 6 pp)./

/ rase the current cursors /
if(inkey != X_M)
{
location = lcol;
putcurs(location);
location = rcol;

putcurs(location);
}

/*some imitializing. . . #/

showaddr = ((long)pagenow)<<28;

if(again < 0) again = 0;

sek = O;

oldofY = O;

cycle = 0;

mark = (int)(((sfreqe2.0)/(float)step) * tic);

if(mark >= 120) tenth = 1; /sshov tenth-of-second tickse/

/*here we go! ¢/
fox(im0 ; ic<magain ; i++)
{

/#do this once to be sure doffset set > 0 »/

/eBaking a time ticke/
if(++loopno == (markekt))
{
place = mark ¢ kt;
sek = 1; /emake a time tick on the next loope/
+okt;
kten = 1;
tenloop = loopno;

showdat (choice,sek,deci);
sek = 0;

oldoff = doffset;
doffset += step;

while (doffset > oldoff)

i£(xbhit())
{

inkey = getkey();

switch (inkey)
{
case K_X:
goto done;
case K_H:
helpvce(2);
break;
case K_DEL:
delmag();
break;
case K_UP:
++gain;
break;
case K_DOVE:
~-gain;
break;
default:

messages(1);

break;
}

}

/%exit from voices/

/shelp windows/

/*delete clipping lighte/

/%legal keys in message centers/

/eMaking a time ticke/
if(++loopno == (markekt))

{

}

place = mark * kt;

sek = 1; /emake a one-second time ticke/

++kt;
kten = 1;

tenloop = loopno;

else

{

if(tenth)
{
deci = O;

markten = mark/10;
if((mark%10) > 5) +4marktenm;
i2((++tenloop) == ((marktenskten) + (placy)))

{

if(kten <= 9) deci = 1;

++kten ;
}
}
}

showdat(choice,sek ,deci);

/8et up for the next loop on this pages/
deci = 0;
sek = O0;
oldoff = doffset;
doffset += step;
i2((4 == again) &2 (doffset >= endoff))

{

48

goto done;
}
}
/%8¢t up for processing the next pages/
oldoff = 0;
++pagenow;
if(pagenow > 9) pagenow = 4;
showaddr = ((long)pagenow)<<i8;
}

done:
if(cycle > 0) movefull(); /eshow the last scrap of datae/
clearmsg(); /serase any messages+/
dmaknt = 1; /eget ready for the next call to ’handle’ DMA acquisitione/

/ drav the first and last cursors /
curcolor = WHITE;
putcurs(firstcol);
putcurs(lastcol);
}
/ /
/ /
;HABDLE. ASK

;handles the DNA end-of-page interrupt

oxtrn _dmapage:WORD
extrn _dmakat:WORD

-TEXT SEGNEST BYTE PUBLIC 'CODE’

TEXT ERDS

.DATA SEGNENT WORD PUBLIC ’DATA’

keep_cs dw] ;holds segment for replaced interrupt
keep_ip dw [} ;holds offset for replaced interrupt
-DATA ENDS

COBST SEGNENT WORD PUBLIC ’CONST’
CONST ENDS

_BSS SEGMENT WORD PUBLIC °’BSS’
-BSS ENDS

DGROUP GROUP CONST, _BSS, _DATA
ASSUNE CS:_TEXT, DS:DAROUP, SS:DGROUP, ES:DGROUP

-TEIT SEGNENT
PUBLIC keep_cs
PUBLIC keep_ip
PUBLIC _handle

.handle PROC FAR

push bp
mov bp,sp
push s
push si
push dai

;Set up to receive interrupt

49

mov ah, 36h

mnov al, Odh

int 21h

mov keep_ip, bx
mov keep_cs, es
push ds

cli

in al,21h

and al,0dafh

out 21h,al

Bov dx, offset master
nov ax, seg master
nov ds, ax

nov ah, 25h

int 21h
sti
pop ds
mov dx,318h
0T al,al
out dx,al
pop dai
Pop si
pop ss
mov sp,bp
pop bp
ret

-handle ENDP

;function to get int address
;number of the vector

;nov segment is in ES, offset in BX
;Store offset

;jstore segment

;save ds
;disable interrupts
;enable interrupt

;offset of interrupt routime in dx
;segment of the interrupt routine
;place in ds

;function to set up a vector

ithe vector number (IRQS)

;change the interrupt

;Tesnable interrupts

;restore ds

;erite to DASH status register

;80 back to C calling routine
;with interrupt still emabled

;The interrupt routine...i.e., what to do vhen an interrupt is found
;dmaknt added to keep track of how many memory pp have beer writtem to

;since the last access by getmem-.c

master proc far

push bp
push ax
push cx
push dx
push bx
push [1]
push ss
push ds
push si
push ai
mov bp,s]

mov dx, Oah
nov al,1
out dx, al

;clears chanl 1 mask register
;bit in 82374 chip

ive must go through all these tricks to capture the value of dmapage
;because it is a global variable in memory, and because here we are

;a large (far) model
mov ax, seg _dmapage

.;get global dmapage from memory

50

mov
mov
nov

s ,ax
bx, offset _dmapage
ax,es: [bx]

;redefine _dmapage to be ready for write

xor

next:

ah,ab
al
al,®
next
al,4

es:[bx] ,ax

;write dmapage to DASE pageregister port

xor
nov
out

noy
x0T
out

ah,ah
dx, 083h
dx,ax

dx,0318h
al,al
dx,al

;increment value of global dmaknt

ax, seg _dmaknt

o8 ,ax

bx, offset _dmaknt
ax,es: [bx]

al
es:[bx] ,ax

;end of hardware interrupt

nov
out

mov
Pop
pPop
Pop
Pop
Pop
Pop
Pop
Pop
pop
Pop

iret

master endp

al, 020n
20n, a1

sp,bp
di
si
ds
[1]
[1]
bx
dx
cx
ax

bp

;put segment into es
;get address
;gst the value of dmapage

;this gets PAGEREG into dx
;write dmapage to pagereg

;erite to DASE status register
;80 that data can be acquired

;get global dmaknt from memory
;put segment into es

;get address

;get the value of dmaknt

;increment

; and update the variable

;required for completion
;of hardware interrupts

.TEXT ENDS

END
/ /
/ /
/+HELPVCE.C

helpvce.c -- "help” menus to be displayed wher the ’h’ key is hit.

./

8include <stdio.h>
8include <graph.h>

51

helpvce(pick)

{

int pick;
int txtcolor, abbrvcol;

_setcoloxr(63);
-setcliprgn(500,138,639,260);
-rectangle (_GBORDER,500,138,639,260);

txtprep();

txtcolor = _gettextcolor();
abbrvcol = §5;
_settextcolor(txtcolor);
-settextwindow(11,64,20,80);

if(pick==1)
{

-settextposition(i,1);
.outtext(" HELP MENU");

-settextposition(3,1);
-settextcolor(abbrvcol);
_outtext("£");
-settextcolor(txtcolor);
-outtext(" freeze");

-settextposition(4,1);
.settextcolor(abbrvcol);
—outtext(“m");
.settextcolor(txtcolor);
-outtext(" see memory");

.settextposition(5,1);
.-settextcolor(abbrvcol);
_outtext("x");
-settextcolor(txtcolor);
_outtext(" exit");

_settextposition(6,1);
.settextcolor(abbrvcol);
—outtext(“del”);
.settextcolor{txtcolor);

_outtext(” erase bar");
}

else if(pick == 2)
{

.settextposition(1,1);
-settextcolor(abbrvcol);
-outtext("s");
_settextcolor(txtcolor);
-outtext(" save to file");

-settextposition(2,1);
.settextcolor(abbrvcol);
~outtext("x");
-settextcolor(txtcolor);
_outtext(" exit");

-settextposition(3,1);
.settextcolor(abbrvcol);
-outtext("F1,F2");
.settextcolor(txtcolor);
-outtext(” left curs");

52

-settextposition(4,1);
-settextcolor(abbrvcol);
-outtext("F3,F4");
_settextcolor(txtcolor);
-outtext(" right curs");

-settextposition(5,1);
-settextcolor(abbrvcol);
-outtext(“esc");
-settextcolor(txtcolor);
—outtext(" prior screen");

-settextposition(6,1);
.settextcolor(abbrvcol);
-outtext("del");
-settextcolor(txtcolor);
_outtext(" erass bar");

_settextposition(7,1);
.settextcolor(abbrvcol);
-outtext("enter");
_settaxtcolor(txtcolor);
-outtext(" next zoom");

-settextposition(8,1);
-settextcolor(abbrvcol);
—outtext(“space");
-settextcolor(txtcolor);
-outtext(" realtime");

}
}
/ see
/*clearhlp.c
Totally erass top level help menu area, border & lines 11-20,
columns 64-8..
./

#include <graph.h>

clearhlp()
{
int txtcolor, 1i;
_satcolor(0);
-rectangle(_GBORDER,500,138,639,260);

txtprep();

txtcolor = _gettextcolor();
.settextcolor(_getbkcolor());
_settextvindow(11,64,20,80);

for(i = 1; 4 < 9; i+)

{
-settextposition(i,1);
-outtext ("xxxrxxxxxxxxxxxx");
}
.settextcolor(txtcolor);
}
/esesssessesssssese ase /
/‘.v .‘......‘.‘..‘..‘..‘...‘....‘.‘.....‘.“.“/
/¢KAYHDR.C

53

kayhdr.c -- Writes headexs to output files of raw spectrogram data so
that said files can be read by ths Kay Sona-Graph

Vorkstation, format 5500.
./

/

ginclude <stdio.h>
#include <stdlidb.h>

kayhdr()
{

extern FILE *stream;
extern int knumi, knum?2;

int tmpO, tmpi, temp, i, j;
unsigned int hertz;

long int place; /+fseek requires this to be longs/

float khertz, tmphertz;

tmp0 = 0; tmpl = 1;

khertz = (1000./((double) (knumi+knum2)));
tmphertz = (unsigned int)khertz ¢ 1000.;
hertz = tmphertz / 10.;

/*urite 512 zeros to push EOF forvard before starting a ’seek’ ¢/

for(i =0 ; i < 512 ; i++)
{
place = (Qongli;
fseek(stream,place,SEEK_SET);
putw(tmpl,stream);
}

revind(stream) ;

place = 24;
fseek(stream,place,SEEK_SET);
fputs(*12" ,stream); /ebytes 25-26s/

place = 38;
fseek(stream,place,SEEK_SET);
putw(tepO,stream); /sbytes 39-40s/

place = 64;
fseek(stream,place,SEEK_SET);
fputs (“S500SD" ,stream); /ebytes 65-70s/

place = 70;
fseek(atream,place,SEEK_SET);
pute((long)tmpl,stream); /sbytes 71-T4s/

place = 120;
fseek(stream,place,SEEK_SET);
putw(tmpl,stream); /ebytes 121-122¢/

place = 122;
fseek(stream,place,SEEK_SET);

patw(hertz,stream); /ebytes 123-124s/
place = 124;

fseek(stream,place,SEEK_SET);

temp = ~32000;

puts(temp,stremm); /ebytes 125-126¢/
place ® 126;

fseek(stream,place,SEEK_SET);

temp = 32149;

54

putv(temp,stream); /*bytes 127-128¢/

/+Bytes 129 - 150 have already been filled with zeroces; these are the
fields for “spectral” data; vwe are saving “sample” data insteads/

/*Space forward to byte 512, where data will begins/

place = 512;
fseek(stream,place,SEEK_SET);

return(0);
}

/ /

/ /

/+KEYS.C

keys.c -~ Functions to read keystrokes, and to determine actions to be
taken, depending on which keys are hit.

s/

/ /

#include “keydefs.h"

/ /
/+Getkey -- returns code for single combo keystrokes
unique code for each keystroke or combination
./
#include <dos.h>

$define XEYIN 0x7
8define LOBYTE OxOOFF

/ /
int getkey()
¢ int ch;
/snormal key codess/
if((ch = bdos(KEYIN, O, O) & LOBYTE) != ’\0’)

return(ch);

/econvert scan codes to unique internal codese/
return((bdos(KEYIN, O, 0) 2 LOBYTE) | IF);

}

/ /

/* keyopts.c -~ key options which control progress of Voice during
execution.

s/

/ /

$include <stdio.h>
#include <graph.h>
$include <conio.h>

#define EXWIDE (138e6) /edivisible by both 2 and 4¢/
8define WHITE 319
8define BLACK 256

void putcurs();

55

void delmag();
void lcursor();
unsigned int emdint5();

int getkey();

int dashoff();

/

keyopts(chanknt ,choice,form)
int chanknt; /¢same as numchan in main ®/
int choice; /+display option set in cmdopt (8 of channels)s/
int form; /#saved output data is raw data or colorcodess/

{

extern unsigned int sabsptr, doffinc;

extern long unsigned int absaddr;

extern int speed, gain, inkey, tkat, lcol, rcol;
extern char curcolor;

int txtcolor, locationm, i;
unsigned int incr;
unsigned int dashtmp = O;

1lcol = O;

rcol = 60;

incr = EXVIDE;/*defaulte/
curcolor = WHITE;

inkey = getkey();
switch (inkey){
case K_I:
quit:
endint5();
dashoff(); /+ turn off the DMA loop */
-Cclearscreen(_GCLEARSCREEY) ;
-displaycursor(_GCURSOROE);
setscr();
_setvideomode(_DEFAULTMODE) ;
oxit(0);
case K_UP:
++gain;
break;
case K_DOWE:
--gain; /eallows negative gaine/
break;
case K_LEFT:
if (speed > 256) speed -= 256;
else speed = 0;
break;
case K_RIGHT:
speed += 256;
break;
case I_DEL:
delmag(); /edelete clipping lights/
break;
case K_F:
endint5(); /estop DMAe/
dashoff();
while(getkey() != K_SPACE);
dashin(absptr,chanknt); /erestart DMAs/
tknt = O;
while(dashtmp < §12)
{
dashtmp = dashget();

56

}

break;

case K_H:
helpvce(l);
break;

case K_N:
endints();
dashotf();

clearmsg(); /eerase existing message vindows/
clearhlp(); /eerase main help menus/

doffinc = EXVIDE;
incr = doffinc;

lcol = 0; rcol = 60;

getmem(choice,incr);
1cursor();

/+EB: the following inkey values are entered in lcursors/

while(inkey '= X_SPACE)
{
/* allow repeated zooms #/
while(inkey == K_RETURN)

{
getmem(choice,incr) ;/¢calculate the start and
end offsets and pages, and
display the delimited signals/
lcol = 0; rcol = 60;
lcursor();
}

/* allow repeated saves to file s/

while(inkey == K_S)

{
gotmem(choice,incr); /¢no new displays/
lcursor();

}

/% send the previous display to the screenm ¢/
while(inkey == K_ESC)
{

getmem{choice,incr);

lcursor();

}

clearmsg(, /+ erase contents of message center »/

if(inkey == K.X)
goto quit;

} /eend of !sK_SPACE loops/
/esesssereset at end of memory display(K_K) ssesssseess/

/erestart the A/D boards/
doffinc = EIVIDE;
dashin(absptr,chanknt) ;
tknt = O;
/%Do some introductory loops to prevent garbage data
(retrieved from BEFORE the first save-buffer) from
being displayed.s/

57

while(dashtmp < 512)
{
dashtup = dashget();

/verase the old cursorss/
location = rcol;
putcurs(location);

location =]lcol;
putcurs(location);

/verase wide waveforme/
if(choice == §)

{
for(i =0 ; i < 60 ; i++)
erase(i);
delmag();
}
/serase help displaye/
clearhlp();
/eput a cursor at start of running displays/
linecurs();
break;
default:
messages(3); /edisplay of legal keyse/
break;
} /send of outside switch s/
}
/ /
/ /
/+LABELV.C
Graphics routines to establish and display annotations before
start of spectrogram display:
labelv
boxes
blkbox
putft
s/
/

#include <stdio.h>
$include <graph.h>

int row,trowi,tcoll,xi,iyl;

/ /

/% labelv.c -~ writes labels to screen for main VOICE using Nicrosoft
C version 5.0 graphics. There are 8 pixels/colummn, 14 pixels/row.

note: the 4-channel display (disp = 1) is not yet implementeds/
/ ve/

labelv(disp)
int disp; /ethis is "option" in main, and is set in cadopt ¢/

58

extern int edge[];

extern int colors[];

int 1,j;

int y2;

int oldcolor, colortxt;

int colk,boxk; /onmmber of columns, aumber of boxes neededs/
char tbuf({5];

char bound[6];

/¢initialize for Nicrosoft graphicse/
-setvideomode (_ERESCOLOR); /* must do this before setting the palettes/

/e*sset up and display voltage color code boxes with ammotationsess/

oldcolor = (_getcolor()); /esave the curremt default colors/
chcolor(colors); /%set up the color palettes/

/*set up for alternate display screemse/
if(disp != 1) /%one and two channel displayse/
{
-setcliprgn(0,256,640,350);
trosl = 22;
x1 = 2;
iyl = 294;
tcoll = 4;
colk = 2;
boxk = 4;
}
else
{ /¢four-channel displays/
-setcliprgn(604,0,640,350);
trowl = 15;
1 = 513; /* @ 8 pixels/columne/
iyl = 196; /¢ @ 14 pixels/row, this is rov 14s/
tcoll = 68;
colk = 1;
boxk = 10;
}

/%establish the area where all these boxes will be writtens/
.settextwindow(trowl,tcoll, (trowi+boxk), (tcoll1+8));

/+Now make the bozes and annotate them . . . #/

/+tirst output a black box enclosed by a shite borders/
row = 1;
blkbox(0);

/+Bext complete 3 more boxes in the first columme/
for(i =1 ; § < 4 ; i+e)
{
-setcolor(i);
y2 = iy1 + 11;
~rectangle (_GFILLINTERIOR,x1,iy1, (x1+18),y2);
-settextposition(i+1,2);
itoa(edge{i] ,bound,10);
outtext(bound);
iyl = y2 + 3;
)}

/+Do the remaining colummse/

if(colk > 1)
{

59

x1 = 160;
iyl= 294;
tcoll ¢= 20;
row = 1; .
}
else
row = §;

boxes (colk,boxk);

/*Finish colorcode section by resetting the default background colore/
-setcolor(oldcolor);

/ End of annotated box /

/eset up text colors/
colortxt = (10);
.settextcolor(colortxt);

/%es Annotate the sample rate se/

if(disp == 1) /* 4-ssmple displaye/
{
_settextwindow(1,64,4,80);
-settextposition(1,1);
-outtext("Fmax = kEz");
}

else /¢ 1 or 2-sample displaye/
{
.settextwindow(1,64,10,80);/¢ Col 63 is first usable col for texte/
.settextposition(1,1);
-outtext("Fmax = kHz");
-settextposition(9,1);
-outtext("Fmin = 0”);
}

/eeeget up a Hessage Centerse/
-setcolor(63);
-rectangle(_GBORDER,500,265,639,349);

/¢ draw horizontal line between annotations and display areae/
-moveto(1,265);
_lineto(480,265);
}

/ /

/%boxes.c - drav and annotate "colknt" columms of “bxkat" color
codes in each column.
./
/ /

boxes(colknt ,bxknt)

int colkmt,bxknt;

{

extern imt row,xi,iyl,trowi,tcoli,edge[];
int 1,3,x2,y2,en4;

char bound[8];

end = O;

for (§ = 0 ; j < colkmt ; j++)
{

ond 4= 4;

60

_settextwvindow(trowl,tcoll, (trowi+bxknt), (tcoli+8));
x2 = x1 + 18;
for(i = end ; i < end+bxknt ; i++)
{
if(edge[i+1] <= 0) goto lastbox;
y2 = iy1 + 11;
~setcolor(i);
-rectangle(_GFILLINTERIOR,x1,iy1,x2,y2);
-settextposition(rov,2);
itoa(edge[i] ,bound,10);
—outtext(bound);
iyl = y2 + 3;
~oTONW;
}
x1 += 160;
iyl = 294;
tcoll += 20;
row = 1,
}
lastbox: blkbox(i);
}

/ /

/* blkbox.c ~- outputs to screen a black cube outlined by white.
74
/ /

blkbox(edgeknt)
int edgeknt;
{
char bound([8];
int blkbord;
extern int row,trowl,tcoll,xl,iyl,edge[];

_setcolor(63); /*needs to be set to bright white for the borders/
-rectangle(_GBORDER,x1,iy1,(x1+18),(iy1+11));

-settextposition(row,2);

itoa(edge[edgeknt|,bound,10);

-outtext(bound);

iyl += 14;

}
/ /
/* putft.c -~ writes value of frequency to specified location on screen.

s/
/ /

putft(freq,secdif ,disp)
double secdif;

float freq;

int disp;

{

char seconds[6],frqmax(6);
int precision = 3;

/+2ix up the screem for writing an MSC Graphics labele/
txtprep();

govt(freq,precision,frgmax); /econvert argl from double to chars/
/*put max frequency om the y axise/

-settexteindow(1,64,2,80);
-settextposition(1,8);

61

-outtext(frgmax);
}

/ /
/ /
/oLCURSOR.C
lcursor.c -~ writes 2 cursor lines bracketing halted rumning display.
Allows user to shift cursors left and right.

Function keys:
F1 « left cursor moves left
F2 - left cursor moves right
F3 - right cursor moves left
F4 =~ right cursor moves right

Defaults:
lcol = O
rcol = 60
./
/ /

$include <stdio.h>
#include <graph.h>
#$include “keydefs.h"

8define VHITE 319 /e this is 63 + 256 »/
8$define BLACK 256 /+ this is O + 256 ¢/

void putcurs();
int getkey();

/ /

lcursor()
{
extern int lcol,rcol, inkey;
extern char curcolor;
int i, j, location, txtcolor, trapflg, pxcol;
curcolor = WHITE;

trapflg = O;

while(1)
{
if(kbhit())
{
inkey = getkey();
switch (inkey)
{
case K_F1:
if(lcol > 0)
{
location = lcol;
putlcurs(location); /serase curremt shite cursors/
==1col;
locatfon = lcol;
putlcurs(location); /ewrite white cursor in new positione/
}
break;
case X _F2:
location = 1lcol;
if(lcol == 0)
putcurs(location);
olae
putlcurs(location);

if(++lcol >= (xcol - 3))

{

printf(*\a");

==1lcol;
}

location = 1col;

putlcurs(location);

break;

case X_F3:
location = rcol;
if(rcol == 60)

putcurs(location);

else

putrcurs(location);

if(--rcol <= (1col + 3))

{

printf("\a");

+txcol;

}

location = rcol;

putrcurs{location);

dbreak;
case K_F4:
if(rcol < 59)
{

location = rcol;

putrcurs(location) ;

++rcol;

location = ycol;

putrcurs(location);

}
break;
case K_DEL:
delmag();
break;
case K_H:
helpvce(2);
break;
case K_X:
11(trapflg)
clearmsg();
return;
case K_S:
if(trapflg)
clearmsg();
return;
case K_SPACE:
1£(trapflg)
clearmsg();
return;
case K_RETURN:
i1(trapflg)
clearmsg();
return;
case K_ESC:
if(trapfig)
clearmag();
return;
default:
messages(1);

/edelete clipping light below amplitude waves/

/surite to the ’help’ windowe/

/+shut down the programe/

/¢save delimited data to files/

/ereturn to running displaye/

/ez00m display the delimited datas/

/eshow the previous screen displaye/

/+display legal keys in message centers/

63

/%linecurs.c -- displays a vertical shite line as a cursor.
This version good for ome~channel display omly.
o/
/ /

unsigned int scratop();
unsigned int (emove)();

/ /

linecurs()

{
extern char colori(];
extern int cycle;
int i, j;

for(j=0 ; j<128 ; j++)
colori[j] = WHITE;

scrntop(colorl, cycle++);

if(cycle >= 8)

{

cycle = 0;

move();

}
}
/ sees/
/ /

/*MESSAGES.C

messages.c -- Functions to write to and clear messages from the Voice
message centexr. Nessage box was created in function
labelv.c, with pixzel dimensions 500,265 to 639,349
@ 8 pixels/col, 14 pixels/row.

*/

/ /

#include <graph.h>
#include <stdio.h>

/ /

messages (pick)

int pick;

{

extern char fidid[], newfid(];

int reply, amswer, txtcolor, mucolor, i;
nucolor = §5;

answer = O;

txtprep();

64

txtcolor = _gettextcolor();
.settextcolor(txtcolor);

.settextuindow(20,64,25,80);

clearmsg(); /sget rid of any current messagess/
printf(“\a"); /ering a belle/

if(pick == 1)

{

/edisplay names of keys legal during memory buffer displays/
.settextposition(1,1);
-outtext(” Legal keys:");
-settextposition(2,2);
—outtext(“F1,F2,F3,F4");
-settextposition(3,2);
-outtext("x, s, h (help)");
-settextposition(4,2);
_outtext(“<escd,");
-settextposition(5,2);
-outtext("<space>,<entexr>");

}

olse if (pick == 2)

{

/%200m limit warninge/
~settextposition(1,1);
outtext("Bo zoom display.");
.settextposition(3,1);
-outtext (“Filesave?(Y/B) ");
.settextposition(4,1);
-outtext("“>>");
reply = getch();
if(reply == ’Y’ || reply == 1y’)

answer = 1;

}

else if (pick == 3)

{

/+display names of keys legal during realtime displaye/
.settextposition(l,1);
-outtext("” Legal keys:");
.settextposition(3,2);
~outtext(*h (help)");
-settextposition(4,2);
.outtext(“f, m, x,");
.settextposition(5,2);
outtext("");

}

else if (pick == 4)
{

/¢tell user he has popped back to original display of memorye/
.settextposition(2,1);
~outtext(" Primary memory ");
~settextposition(3,1);
-outtext(" display”);
}

else if (pick == §)
{
/efor filesave 1/0s/
-settextposition(2,1);
outtext(" File ID? *);

65

-settextposition(3,1);
—outtext(* >");
}

else if (pick == 6)
{
/efor filesave I/De/
.settextposition(1,2);
~outtext(newfid);
-settextposition(2,1);
-outtext("This file");

-settextposition(3,1);
-outtext (“contains data.");
-settextposition(4,1);
~outtext("Append? (Y/E)");
-settextposition(§,1);

-outtext('>>");

reply = getch();

if(reply == 'F’ || reply == ’n’)
ansver = 1;

}

else if (pick == 7)
{
/etor filesave 1/0s/

/*display the filenames/
.settextposition(2,1);
-outtext("The save file is");
.settextposition(3,2);
-outtext(newfid);

/sgive a progress report to the users/
.settextposition(5,1);
-outtext("Save in progress");

}

else if (pick == 8)
{
/efor tilesave I/0¢/

/*display the filenames/
.settextposition(1,2);
-outtext(newfid);

/egive a final progress report to the users/
-settextcolor(nucolor);
-settextposition(5,1);
~outtext("Save completed");
.settextcolor(txtcolor);

}

else if (pick == 9)
{
-settextposition(3,1);
-outtext("Showing ");
-settextposition(4,1);
_outtext("previous display");
}

else if (pick »= 10)
{
.settextposition(2,1);
-outtext("This file");

_settextposition(3,1);
_outtext(“contains data.");
_settextposition(4,1);
outtext ("Enter new file");
.settextposition(§,1);
—outtext(">>");
}

else if (pick == 11)
{
-settextposition(2,1);
-outtext("No data saved”);

}
return(ansver) ;

}

/

/*clearmsg.c
Clears out any messages written to screen in message area lines 20-25,
columns 64-80.

*/

/

clearmsg()
{

int txtcolor, i;

txtprep();

txtcolor = _gettextcolor();
-settextcolor{_getbkcolor());
_settextwindow(20,64,25,80);

for(im1 ; i<6 ; i++)
{
.settextposition(i,1);
—outtext ("xxxxxxxxxxxxxxXxx");

}

-settextcolor{(txtcolor);

}

/evesn oss/
/ /
;MOVE . ASK

; Moves an 8-pixel columm of data (eritten at righthand side of display
; window) to the left, allowing more data to be writtem on the right
; without overwriting existing data.

_TEXT SEGMENT BYTE PUBLIC ’CODE’
-TEXT ENDS

-DATA SEGMENT WORD PUBLIC ’DATA’
-DATA ENDS

CONST SEGNENT WORD PUBLIC ’CONST’
COEST EBNDS

.BSS SEGMENT WORD PUBLIC °’BSS’
.BSS ENDS

67

DGROUP GROUP COEST,

ASSUME CS:_TEXT, DS:DGROUP, SS:DGROUP, ES:DGROUP

-TEXT SEGNENT

PUBLIC _movetop

-movetop PROC FAR

push bp
mov bp,sp
push ss
push si
push dai
push ds
nov ax, 0a019h
nov es, ax
nov ds, ax
mov dx, 3ceh
mov al, §
out dx, al
inc dx
moy al, 1
out dx, al
cld
nov bx, O
mov dx, 61
mov bp, 80
ReWrow:
mov di, bx
mov si, di
inc si
mov cx, dx
rep movsb
add bx, bp
cmp bx, 10240
jle newrow
pop ds
pop di
pop si
pPop ss
pop bp
Tot

.movetop ENDP

PUBLIC _movefull

movefull PROC FAR

push
Bov

push
push
push
push

bp
bp,sp
84
si
di
ds

ax, Oa019h
es, ax

ds, ax

dx, 3ceh

;video ram base
;set up segment pointer

;set write mode 1
;index register §

;send the index

;point to mode register
;choose mode 1

;set the mode

;clear direction flag (autoinc.

;bx points to row
;number of colummns to move
inext row pointer

;di = destination

;8 = source

;cx = column counter
;move over 1 row
;point to next row
;done with all rows ?
;no, go do next row

;video ram base
;set up segment pointer

;set write mode 1

68

movs)

»

mov al, § ;index register 5
out dx, al ;send the index
inc ax ;point to mode register
mov al, 1 ;choose mode 1
out dx, al ;set the mode
cld ;clear direction flag (autoinc. wmovs)
»ov bx, O ;bx points to row
mov dx, 61 ;number of columns to move
mov bp, 80 ;next row pointer
again
nov di, bx ;i = destination
mov si, di
inc si ;8i = source
nov cx, dx ;¢x = column counter
rep movsb ;move over 1 row
add bx, bp ;point to next row
cmp bx, 20480 ;done with all rows ?
jle again - ;no, go do mext row
PopP ds
pop ai
pop si
pop s
Pop bp
ret
_movefull ENDP
_TEXT ENDS
END
/ /
/ /
;PUTCURS . ASH

;¥rite directly to the EGA video RAM. This routine assumes the video driver
;is IBM compatibdle and supports EGA mode 10H (640x350, 16 colors)

;Write a vertical linecursor to the screen
; putcurs(text columm number)

extrn _curcolor:BYTE

-TEXT SEGMEST BYTE PUBLIC ’CODE’
-TEXT ENDS

-DATA SEGNENT WORD PUBLIC ’DATA’
-DATA ERDS

CONST SEGMENT WORD PUBLIC ’CONST’
COEST EBDS

-BSS SEGMENT WORD PUBLIC ’BSS’
_BSS ENDS

DGROUP GROUP CONST, _BSS, _DATA
ASSUME CS:_TEXT, DS:DGROUP, 8S:DGROUP, ES:DGROUP

_TEXT SEGMENT
PUBLIC _putcurs

_putcurs PROC FAR

push bp

69

;set up

bp.sp

ax, seg _curcolor ;pass segment to ds

ds, ax

bx, offset _curcolor ;ds: [bx]

dx, 3ceh
al, §

dx, al

dx

al, 2

dz, al

ax, 0a01%h
o8, Aax

bit mask register

dx, 3ceh
al, 8
dx, al
dx

ax, 80h
dx, al

;set video srite mode 2

;video mode 2

;point to top left screen corner

;point to address register

;bit mask register

;address the register

;point to data register

;mask out all bits except bit 7
;send data to mask register

color so that the screen data can be redisplayed later

dx
al, O3hn
dx, al
dx

al, Q1i8h
dx, al

; put the color into the mask register

nov

dx, ds:[bx]

;get the column number vhere cursor is to be written

;load with screen column number to write to

;2111 the latch registers

;20480 for 256 pts ~- columm bottom

mov cx, [bp+6)
moy bx, cx
;drav a pixel
coll: mov al,es:[bx]
mov al, d1 ;pixel color
mov es:[bx], a1 ;draw the pixel
add bx, 80 ;point to pixel below
cmp bx, 20480
i1 coll
pPop ds
pop di
PoP si
pop s
PoP bp
ret
-putcurs ENDP
TEXT ENDS

70

/
/

~ N~

; PUTLCURS . ASH

;¥rite a vertical linecursor to the screen at specified “text" columm
;with the cursor appearing as a left-bracket

;argument --

putlcurs(text columm number)

;¥rite directly to the EGA video RAN. This routine assumes the video driver
;is IBN compatible and supports EGA mode 10H (640x350, 16 colors)

extrIn

_TEIT
_TEXT

_DATA
_DATA

COEST
CORST

_BSS
_BSS

~curcolor:BYTE

SEGMEST BYTE PUBLIC ’CODE’

SEGMENT WORD PUBLIC

ERDS

SEGMENT WORD PUBLIC

SEGMENT WORD PUBLIC

ENDS

DGROUP GROUP CONST,
ASSUME CS:_TEXT, DS:DGROUP, SS:DGROUP, ES:DGROUP

-TEXT

SEGMENT

PUBLIC _putlcurs

-putlcurs PROC FAR

;get the column

push
mov

push
push
push
push

mnov
nov

mov

nov

bp

bp,sp

ss
si
di
ds

ax, seg _curcolor

ds,

;pass segment to ds

number where cursor is to be written

cx, [bp+6]
, 3ceh

»

FERERE

ax, 0a01%h

gERER

5
al

2
al

mask register
dx, 3ceh

;set video write mode 2

;video mode 2

;point to top left screem cormer

;point to address register

ibit mask register

;address the register

;point to data register

;1111 1111 - mask sets cursor width
;send data to mask register

71

;X0R the cursor color so that the screen data can be redisplayed later

dec dx

»ov al, O3h
out dx, al
inc dax

mov al, 018k

out dx, al

; put the color into the mask register
mov bx, offset _curcelor
mov dax, ds:[bx]

;load screen columm number
nov bx, cx

; draw the first pixel row in the column

nov al,es: [bx] ;2il1 the latch registers
mov al, A1 ;pixzel color
mov os:[bx], al ;drav the pixel

; now redefine the mask, and draw the rest of the colummn
;set up bit mask register

mov dx, 3ceh ;point to address register

mov al, 8 ;bit mask register

out dx, al ;address the register

inc dx ;point to data register

mnov ax, 128 ;1000 0000 - mask sets cursor width

out dx, al ;send data to mask register
;X0R the cursor color so that the screen data can be redisplayed later

dec dx

mov al, O3h

out dx, al

inc dx

mov al, 018h

out dx, al

; put the color into the mask register
nmov bx, offset _curcolor
mov dx, ds:[bx)

;load screen column number
nov bx, cx

;draw a pixel

coll: mnov al,es:[bx] ;£i11 the latch registers
nov al, 41 ;pixel colorxr
mov es:[bx], al ;draw the pixel
add bx, 80 ;point to pixel below
cap bx, 20400 ;column bottom
1 coll

; finally, redefine mask and draw the last pixel row

nov dx, 3ceh ;point to address register
nov al, 8 ;bit mask register
out dx, al ;address the register
inc dx ;point to data register
mov ax, 255 ;1111 1111 -~ mask sets cursor width
out dx, al ;send data to mask register
72

dec

;I0R the cursor color so that the screen data can be redisplayed later

dx
al,
dx,
dx
al,
dx,

03h
al

018h
al

; put the color into the mask register

mov bx, offset _curcolor
mov dx, ds:[bx]
;load screen columm number
mov bx, ¢x
add bx, 20400

; draw the last

pixel row in the columm

mov al,es: [bx] ;£111 the latch registers
mov al, A ;pixel color
mov es:[bx], a1 ;drav the pixel
pop ds
pop di
pop si
PopP ss
PoP bp
ret
»
-putlcurs EEDP
-TEXT ENDS
END
/ /
/ /

; PUTHAG . ASH

;Write directly

to the EGA video RAN. This routine assumes the video driver

;is IBN compatible and supports EGL mode 108 (640x350, 16 colors)

-TEXT SEGNENI BYTE PUBLIC ’CODE’

-TEXT ENDS

.DATA
value equ 80h
-DATA EBEDS

CONST SEGNEFT
CONST ENDS

DGROUP OQROUP COBST,

SEGNE. I WORD PUBLIC ’DATA’

WORP PUBLIC 'CONST’

VORD PUBLIC ’BSS’

-BSS, _uATA

ASSUNE CS:_TEXT, DS:DGROUP, S$S:DGROUP, ES:DGROUP

. _TEXT SEGHENT

PUBLIC _putmag

73

_putmag PROC FAR

pusk bp

mov bp,sp

push s

push si

push di

push ds

mov ai, [bp+6)

mov ax, [bp+8]

nov ds, ax

mov si, 80k

nov dx, 3ceh

mov al, &

out dx, al

inc dax

mov al, 2

out dx, al

mov ax, 0a01Sh

mov es, ax
;set up bit mask register
setup: mov dx, 3ceh

nov al, 8

out dx, al

inc dx

mov cx, [bp+10]

mov ax, 80h

shr ax, cl

out dx, al

;get the bar height to be plotted

;pass offset of data buffer
;pass segment to ds

;mask register

;set video write mode 2

;video mode 2

;point to top left screen corner

;point to address register

;bit mask register

;address the register

;point to data register

;load column number from call variable
;load value to be shifted

;compute bit mask for proper column
;send bit mask to mask register

;plotting a symmetric envelope - symmetry about a ceaterline
;plot bdlack bar, followed by a color bar with width symmetric about the
;middle, finished off with another black bar

mov
sudb
nov
msul
add
add

coll: mov

col2: mov

ax, 64

ax, ds:[ai]
dx, 80

dx

ax, 10240
ax, 60

cx, ax

ax, 64
ax, ds:[di]
ax, 80

ax, 10240
ax, 60
dx, ax

bx, 60+10240

al, es:[bx)

byte ptr es:[bx}, 00
bx, 80

bx, cx

coll

al, es:[bx)
byte ptr es:[bx], 04

;losd max height
;subtract bar height

;get rov number to start

;locate below spectral window

;80 to columm 60

;cx holds the address for top boundary

;do again for bottom boundary
;add bar height

;get rov number to start
;locate below spectral window
;80 to columm 60

;dx holds the address for bottom boundary

;address to start on(60 cols,2¢128 rows)
;2411 the latch registers
;dray the pixel

;point to pixzel below
;are ve at the threshold

;load color 4 for lower part

74

add bx, 80
cup bx, dx ;done with column?
b} 8 col2
col3: »ov al, es:[bx) ;load color 4 for lower part
mov byte ptr es:[bx], 00
add bx, 80
cap bx, 20480 ;done with column?
n col3
finish:
Pop ds
pop di
pop si
pop L
Pop bp
Tot
-putmag ENDP
_TEXIT ENDS
END
/ /
/ /

; PUTRCURS . ASK

;Write a vertical linecursor to the screen at specified “text" column
;with the cursor appearing as a right-bracket

»

;argument -- putrcurs(text column number)

;Urite directly to the EGA video RAN. This routine assumes the video ;lrinr
;is IBM compatible and supports EGA mode 10H (640x360, 18 colors)

extrn _curcolor:BYTE

_TEXT SEGMENT BYTE PUBLIC ’CODE’
-TEXIT ENDS

_DATA SEGMENT WORD PUBLIC ’DATA’
_DATA ENDS

CONST SEGNENT WORD PUBLIC ’COEST’
COEST ENDS

-BSS SEGMENT VORD PUBLIC ’BSS’
-BSS ENDS

DGROUP GROUP CONST, _BSS, _DATA
ASSUME CS:_TEXT, DS:DGROUP, SS:DAROUP, ES:DGROUP

-TEIT SEGNENT
PUBLIC _putrcurs

-putrcurs PROC FAR

push bp
mov bp,sp
push ss
push si
push di

75

ds

ax, seg _curcolor ;pass segment to ds
ds, ax

number where cursor is to be written

cx, [bp+6]

dx, 3ceh ’ ;set video write mode 2
al, &

dx, a1

dx

al, 2 ;video mode 2

dx, al

ax, 0a019h ;point to top left screen cormer
o8, ax

;set up bit mask register

;X0R the cursor
dec
mnov
out
inc
Bov
out

dx, 3ceh ;point to address register

al, 8 ;bit mask register

dx, al ;address the register

dx ;point to data register

ax, 265 ;1111 1111 - mask sets cursor width
dx, al ;send data to mask register

color so that the screen data can be redisplayed later
dx

al, O3h

dx, al

dx

al, 018h

dx, al

; put the color into the mask register

mov
nov

bx, offset _curcolor
dax, 4s:[bx]

;load screen column number
; need one column to the left for bracket to point left

dec
mov

cx
bx, cx

; drav the tirst pixel rowv in the columm

mov
nov
mov

al,es: [bx] ;2111 the latch registers
al, 41 ;pixel color
es:[bx], al ;draw the pizel

; now redefine the mask, and drav the rest of the columm

;set up bit mask register

dec

dx, 3ceh ;point to address register
al, 8 ;bit mask register

dx, al ;address the register

dax ;point to data register

ax, 128 ;1000 0000 - mask sets cursor width
ax, al ;send data to mask register
color se that the screen data can be redisplayed later
dx

al, O3h

dx, al

dx

al, 018h

dx, al

76

; put the color into the mask register

mnov bx, offset _curcolor
nov dax, ds:[bx]
;load screen columm number
inc cx ito return to valid column number
mov bx, cx
H
;drav a pixel
coll: mov al,es:[bx] ;£i11 the latch registers
nov al, d1 ;pixel color
mov es:[bx], ad ;drav the pixel
add bx, 80 ;point to pixel below
cmp bx, 20400 ;20480 for 266 pts (columm bottom)
j1 coll

; finally, redefine mask and drav the last pixel row

dec

dx, 3ceh ;point to address register

al, 8 ;bit mask register

dx, al ;address the register

dx ;point to data register

ax, 255 ;1111 1111 - mask sets cursor width
dax, al ;send data to mask register

color so that the acreen data can be redisplayed later
dx

al, O3h

dx, al

dx

al, 018h

dx, al

; put the color into the mask register

mnov bx, offset _curcolor
mov dx, ds:[bx]
;1oad screen column number
H need one column to the left for bracket to point left
dec cx
nov bx, cx
add bx, 20400
; draw the last pixel row in the columm
mov al,es:[bx] ;2i11 the latch registers
mov al, dl ;pixel color
mov es:[bx], al ;drav the pixel
pop ds
pop ai
pop si
pop ss
pop bp
reot

-putrcurs ENDP

_TEXT ENDS

77

/ /
/*REVIE¥.C

revies.c -~ displays a file of binary data which has been

saved during previous runs of Voice. Input file may be any size;

it is read in chunks of 512 bytes.

August 1989 version allows the display of one chammel of data, invoked
by including ~r and the filename on the command line.
*/

/ /

$include <stdio.h>
$include <graph.h>

$include “keydefs.h"

$include “fcntl.h”

$include "hsmos.def"

$define O_RAW O_BINARY

8define enable_pi wstcr((rstcr()&STC_RUN) | STC_DPAGE1)
$define disable_edm wstcr(rstcx()&STC_MEM_MASK)

$define enable_p0 wstcr((rstcr()&STC_RUN) | STC_DPAGEO)

unsigned int scrmtop();

unsigned int scrabot();

unsigned int totmst();

unsigned int totms2();

unsigned int movetop();

unsigned int movefull();

unsigned int (emove)(),(stmstmt)();

/ /

review(disp)
int disp; /+’option’ in maine/
{
extern FILE ¢stream;
extern char fidin[], coloril[], coloxr2();
extern unsigned int sdataptr, stasptr;
extern unsigned int doffinc; /¢ default = 1386 o/
extern long unsigned int tmsaddr;
extern int inkey, gain, cycle, fftvalll, +lpil, *1p2, *ltmp, lcol, rcol;
extern int ptknt, fftout, kay;
FILE efp;
int i,j,k,m,n,loopknt;
unsigned int revdata[256],reviknt;
unsigned int rawval;
long int strt, place;
revknt = cycle = O;
gain = 0;

/*open the data input files/
ir((fp = fopen(fidin,"rb")) == NULL)
{

-clearscreen(_GCLEARSCREEN) ;
-displaycursor(_GCURSORON);
_setvideomode(_DEFAULTNODE) ;

setscx();

printf("Could not open input file\n");
oxit(0);

}

/eread data input file in 512-byte chunks; process and output each chunks/
if(kay)

78

{
place = 512;
fseek(fp,place,SEEX_SET);
}

strt = ftell(fp);

/+ Top of user-control and read-execute loope/
while(1){
ir(xbhit()){
inkey = getkey();
switch (inkey){
case K_F:
while(!kbhit());
break;
case L_S:
lcursor();
savscr(1);
/*move fp forward the required number of bytese/
if(lcol > 1)
fseek(fp, (Long) (((1col-1)e8) « 272),SEEK.CUR);
furite(fp,sizeof(int),((rcol~lcols1) » 4 & 136),stream);
break;
case K_X:
fclose(fp);
-clearscreen(_GCLEARSCREEN) ;
-displaycursor(_GCURSORON);
setscr();
-setvideomode(_DEFAULTNODE) ;
oxit(0);
case K_UP:
+4gain;
break;
cane K_DOVWN:
if (gain > 0) --gain;
. break;
}
}
for{ nw0 ; n < 256 ; n++)
if(xay)
{
ravval = getu(fp);
revdataln] = rasval << 4;
}
else
{
revdata[n] = getw(fp);
}
revknt++; /stally of 5i12-byte chunkse/

if(feot(fp))
while(!'kbhit());

strt+=(long)doffinc;
fseek(fp,strt,SEEK_SET);

/eimplement the FFT-display loope/
dataptr = revdata;
writpm(30, 1p1, 12);
strt320(30) ;
tmaptr = (unsigned ¢)((1p2{0]1<<1) | twsaddr);
enable_po0;
tusfat (dataptr,tusptr,ptknt, gain);/e default ptknt = 128¢/
for (j=0; j<128; j++)
colori(127-31] = (char)fftvalljl:

79

scratop(celorl, cycle++);

if (cycle == 8) {
cycle = 0;
movetop();

}

readdm(1p2{1], fftval, fftout);
ltmp = 1p2;

1p2 = 1p1;

1pi = ltmp;

while((inp(IOBASE) & 0x08) == 0);
h1t3200);

} /send of user-conmtrol loops/

}

/
/
/*SAVSCR.C
Savscr.c -- stores a section of data from the memory buffer that
previously has been displayed on the screen.
Data are either written to an output file which contains’
a header (ailowing input to the Kay Sona-Graph
Vorkstation), or are appended to a user-specified
the file (non-Kay mode).
note: code is present for the saving of color-coded data, but it is
not enabled.

~ N

./
/ /

#include <stdio.h>
#include <stdlid.h>
#include <string.h>
#include <graph.h>
gsinclude <sys\types.h>
ginclude <sys\stat.h>

#include "“hsmos.def"

$include "fcntl.h"

$define O_RAV O_BIBNARY

8define enable_pi wstcr((rstcr()&STC_RUN) | STC_DPAGE1)
8define disable_edm wstcr(rstcr()&STC_NEN_MASK)

$define enable_p0 wster((rstcr()&STC_RUN) { STC_DPAGEO)

unsigned int totmsi();

char samples(8];
char opnmode(3];
char kaymode[] = “wb";
char etcmode[] = “ab“;

/ UU-/
savscr(pstrt ,offstrt ,offend,pageknt,step)

unsigned int pstrt, offstrt, offend, step;

int pageknt;

extern int fftval(], »1p1, ¢lp2, eltmp, lcol, rcol, kay;
extern char fidid[], newfid(], colori[l;

80

extern unsigned int stmsptr;
extern long unsigned int tmsaddr;
extern FILE »stream;
4
struct stat buf;
unsigned long int pageaddr, binknt, stand;
long int place;
unsigned int rawval;
unsigned int snewptr, outval, ofset, oldof;
int result, dtyp, txtcolor, savgaim, i, j;

savgain = O;

dtyp = O;

result = -1;

binknt = 0; /efor accruing number of words sent to saved Kay files/

/%note: To implement filesaves of color-coded data or of revieved data, dtyp
must be added to the argument list. Then dtyp would equal O for dma
inpu¢, 1 for file input, 2 to output color codess/

/*get a filename from the users/
messages(5);

Testart:
gots(nevwtid);

/+do we have a new filename, or just a <CR> ?#/
if(strlen(newfid) > 0)
{
/+see if this file already existss/

if(stat(newfid,&buf) == 0)
{
/sthis file exists already -- set up for an append, or request
a new filename if this is to be a Xay header files/
for(j=0 ; j<15 ; j++)
newfid[j] = ? ?;

if(kay)
{
messages (10);
goto restart;
}
else
{
if(messages(6) == 1)
{
messages(5);
goto restart;
}

else
{
/%user hit <CR> =- no save is mades/
messages(11);
return(0);

}
/*0pen the new data filee/

if(dtyp < 2)
{

81

/*binary write or append of raw datas/

if(kay)
strcpy(opnmode ,kaymode); /sKay header files/
else
strcpy(opnmode ,etcmode); /¢non-Kay; can be appendeds/

if((stream = fopen(newfid,opnmode)) == NULL){
.c_oxrscreen(_GCLEARSCREEN) ;
-displaycursor (_GCURSORON) ;
setscx();
_setvideomode (_DEFAULTNODE) ;
printf("Cannot open a nev file. Your hard disk may be full.\n");
clearerr(stream) ;
exit(0);
}
}
else
/+ append of colorcoded datas/
if((stream = fopen(newfid,”a")) == WULL){
_clearscreen(_GCLEARSCREEN) ;
-displaycursor (_GCURSORON) ;
setscxr();
-setvideomode (_DEFAULTNODE) ;
printf("Cannot open & new file. Your hard disk may be full.\n");
clearerr(stream) ;
exit(0);
}

/*redefine fidids/
strcpy(fidid,nevfid);

messages(7);

/#write data to either 0ld or nev files/
/*save dma datae/
if(dtyp == 0)
{
if(kay)
{
kayhdr() ;
}
ofset = offstrt;
oldof = O;
pageaddr = ((long)pstrt)<<28;

/*loop once for each page, stopping on last page when offend is
reacheds/

for(j=0 ; j <= pageknt ; j++)
{

/* do once at start of page to set ofset > 0 #/
nevptr = (unsigned *)(ofset | pageaddr);
rawval = spewptr;
if(kay)

rasval = rawval >> 4;

if(putw(rasval,stream) == EOF){
if(ferror(stream)){
/¢cannot write to file - the disk may be fulle/
.clearscreen(_GCLEARSCREEN) ;
.displaycursor (_GCURSORON);
setscr();
.setvideomode (_DEFAULTNODE) ;
printf(“Cannot write to file. Your hard disk may be full.\n'");

82

clearezrr(stream);
exit(0);
}
}
oldof = ofset;
ofset += 2;
++binknt ;

while(ofset > oldof)
{
newptr = (unsigned ¢)(ofset | pageaddr);
rawval = snewptr;
if(kay)
rawval = rawval >> 4;

if(putw(rawval ,stream) == EOF){
if(ferror(stream)){
/ecannot write to file - the disk may be fulls/
-clearscreen(_GCLEARSCREEN) ;
-displaycursor (_GCURSORON) ;
setscr();
-setvideamode (_DEFAULTNODE) ;
printf("Cannot write to file. Your hard disk may be full.\n");
clearerr(stream) ;
exit(0);
}
}
oldof = ofaet;
ofset += 2;
if((j == pageknt) && ((ofset+step) >= ofiend))
{

/+*it(kay), plug in binknt number of samples writtens/
if(kay)
{
rewind(stream);
place = 26;
stand = 10000;
shile(binknt < stand)
{
++place;
stand /= 10;
}
faeek(stream, place, SEEK_SET);
ultoa(binknt, samples, 10);
fputs(samples, stream);
}
messages(8);
fclose{stream);
return(0);
}
++binknt ;
}
oldof = O;
+pstrt;
if(pstrt > 9) pstrt = 4;
pageaddr = ((long)pstrt)<<28;
}
}

/esesfrom here on down is disabled by dtyp being hardsired to O sese/
/¢ if this is to be enabled, the code wust be revised s/

else if (dtyp == 1)
/*save data input from a files/

83

return; /¢. . . to function ’revies’, to save saved datas/

else if (dtyp == 2)
/*save the colorcodes of expanded fftvaluess/
{
outval = (long int)newptr;
ofset = outval & OxFFFF,;
for(§ = 0 ; 1 < 480 ; i++)
{
writpm(30, 1p1, 12);
strt320(30) ;
/onewptr = {unsigi ad o) {ofset | asbsaddr);s/
tusptr = (unsigned »)((1p2[0])<<1) | tmsaddr);
enable_p0;
totmsi(newpty, tmsptr, 266, savgain);
ofset += 136;
for(j = 0 ; j < 128 ; j++)

{

colori{j] = (char)tfetvallj];

putc(colori(j],stream);

}

for(j =0 ; § < 512 ; j++); /ewait loops/

readdm(1p2{1], fftval, 256);

ltmp = 1p2;
1p2 = 1p1;
1pt = ltmp;
while((inp(IOBASE) & 0x08) == 0);
11t3200);
}
}
}
/
/

; SCREEN . ASK

; Draws the sonogram image to screem.

;Write directly to the EGA video RAM. This routine assumes the video
;is IBM compatible and supports EGA mode 10H (640x350, 16 colors)

B note: 9/88 - Routines setscr, scrntop and scrmbot are functionmal.

; code exists as hooks for future expansion.

_TEXT SEGMENT BYTE PUBLIC ’CODE’
_TEIT ENDS

.DATA SEGNENT WORD PUBLIC ’DATA’
.DATA EEDS

CONST SEGMENT WORD PUBLIC ’CONST’
CONST ENDS

.BSS SEGMENT VWORD PUBLIC ’BSS’
.BSS ENDS

DGROUP GROUP CONST, _BSS, _DATA
ASSUME CS:_TEXT, DS:DGROUP, S3:DGROUP, ES:DGROUP

.TEXT SEGMENT
isetscr resets palette values to default colors

84

~

driver

Other

PUBLIC _setscr

.setscr PROC FAR

push bp
mov bp,sp
push ss
push si
push di
mov ak, O
mov al, O10h ;set video mode 10h
int 10h
pop di
pop si
Pop s
Pop bp
ret

-setscr ENDP

PUBLIC _scrantop

-scratop PROC FAR

push bp

mov bp,sp

push ss

push si

pash di

push ds

mov di, [bp+6] ;pass offset of data buffer
mov ax, [bp+8] ;pass segment to ds

mnov ds, ax

mov dx, 3ceh ;set video write mode 2
nov al, §

out dx, al

inc dx

mov al, 2 ;video mode 2

out dx, al

mov ax, Oa01%h ;point to top left screem cormer
mov es, ax

;set up bit mask register

mov dx, 3ceh ;point to address register

mov al, 8 ;bit mask register

out dx, al ;address the register

inc dx ;point to data register

mov cx, [bp+10]

mov ax, 80h

shr ax, ¢l

out dz, al ;send data to mask register
;dras a pixel

»ov bx, 60 ;load with acreea columm mumber to write to
coll: mov al,es:[bx) ;2111 the latch registers

mov al, ds:[di] ;pixel color from impet array

mov es:[bx], a1 ;draw the pixzel

inc di ;point to mext imput array element

add bx, 80 ;point to pixel below

cnp bx, 10240 ;10240 OR 20480 for 256 pts (columa bottom)

85

j1 coll
finish:
PoP ds .
pop di
pop si
pop ss
pop bp
ret

-scrntop ENDP
PUBLIC _scranbot

.scrnbot PROC FAR

push bp

nov bp,.sp

push ss

puah [31

push ai

push ds

nov di, [bp+6] ;pass offset of data buffer
mov ax, [bp+8] ;pass segment to ds

oY ds, ax

mov dx, 3ceh ;set video write mode 2
mov al, §

out dx, al

inc dx

mov al, 2 ;video mode 2

out dx, al

mov ax, 0a01%h ;jpoint to top left screem cormer
mov es, ax

;set up bit mask register

nov -dx, 3ceh ;point to address register

mov al, 8 ;bit mask register

out dx, al ;address the register

inc dx ;point to data register

nov cx, [bp+10]

moy ax, 80h

shr ax, cl

out dxz, al ;send data to mask register
;drav a pixel

mov bx, 80+10240 ;load with acreen columm number to srite to
cola: mov al,es:[bx] ;2411 the latch registers

mov al, ds:[di) ;pizel color from input array

mov es:{bx], a1 ;drav the pixel

inc dai ;point to mext imput array elememt

add bz, 80 ;point to pixel bdelow

cmp bz, 20480 ;10240 OR 20480 for 256 pts

pp e cola
bye:

pop ds

pop dai

Pop si

pop ss

PP bp

Tet

86

.scrnbot RKEDP

PUBLIC _scrail ¢
-scrnl PROC FAR
push bp
nov bp,sp
push [1]
push si
push ai
push ds
mov dai, [vp+6] ;pass offset of data buffer
mov ax, [bp+8] ;pass segment to d=
»OV ds, ax
nov dx, 3ceh ;set video write mode 2
mov al, §
out dx, al
inc dx
»ov al, 2 ;video mode 2
out dx, al
mov ax, 0a01%h ;point to top left screen corner
mov oS, ax
;set up bit mask register
mov dx, 3ceh ;point to address register
mov al, 8 ;bit mask register
out dx, al ;address the register
inc dx ;point to data register
mov cx, [bp+10]
»oy ax, 80h
shr ax, cl
out dx, al ;send data to mask register
;drav a pixel
mov bx, 60 ;load with acreen columm number to write to
coldb: mov al,es:[bx] ;2411 the latch registers
mov al, ds:[di) ;pizel color from imput array
mov es:[bx}, al ;draw the pixel
inc di ;point to mext input array element
add bx, 80 ;point to pixel below
cmp bx, 5120 ;10240 OR 20480 for 256 pts
j1 cold
epdl:
pop ds
pop ai
pop si
pop ss
PoP bp
ret
-scral KEDP
PUBLIC _scxa2

pssh by
mov bp,sp
push ss
puah [3%

87

push dai

push ds

mov dai, [vp+e] ;pass offset of data buffer
mov ax, [bp+8] ;pass segment to ds

nov ds, ax

mov dx, 3ceh iset video write mode 2
mov al, §

out dx, al

inc [

»ov al, 2 ;video mode 2

ont dx, al

nov ax, 0a019h ;point to top left screem cormer
mov oS, ax

;set up bit mask register

mov dx, 3ceh ;point to address register
mov al, 8 ;bit mask register
out dz, al ;address the register
inc dx ;point to data register
mov cx, [bp+10)
»ov ax, 80h
shr ax, €l
out ax, a1 ;send data to mask register
;drav a pixel
»ov bx, 60+5120 ;1oad with screea colum number to write to
colc: mov al,es: [bx] ;2411 the latch registers
mov al, ds:[di) ipixel color from imput array
mov es:[bx], al ;dras the pixel
inc ai ;point to next input array element
add bx, 80 ;point to pixel below
cap bx, 10240 110240 OR 20480 for 256 pts
b2 3 colc
end2:
pPop ds
pop 4ai
PoP si
pop ss
pop bp
rot
-scrn2 ENDP
PUBLIC _scran3
-scra3d PROC FAR
push bp
nov bp,sp
push s
push si
push ai
push ds
mov di, [bpee) ;pass offset of data buffer
mov ax, [bp+8) ;Pass segment to ds
mov ds, ax
mov dx, 3ceh ;set video write mode 2
sov al, §
out dx, al
88

inc dx

movy al, 2 ;video mode 2

out dx, al

mov ax, 0a019h ;point to top left screen cormer
mov o8, ax

;set up bit mask register

nov dx, 3ceh ;point to address register
mov al, 8 ;bit mask register
out 4z, al ;address the register
inc dax ;point to data register
mov cx, [bp+10]
movy ax, 80h
shr ax, cl
out dx, al ;send data to mask register
;drav a pixel
mov bx, 60+10240 ;load with screen column number to write to
cold: mov al,es:[bx] ;£ill the latch registers
nov al, ds:[di) ;pixel color from input array
nov es:[bx], a1 ;draw the pixel
inc dai ;point to next imput array element
add bx, 80 ;point to pixzel belos
cmp bx, 15360 ;10240 OR 20480 for 256 pts
j1 cold
end3:
pop ds
Pop di
pop si
pop ss
Pop bp
ret
-scrn3 ENDP

PUBLIC _scrn4

-scrnd PROC FAR

push bp

nov bp,sp

push as

pash si

push di

push ds

nov ai, [bp+a) ;pass offsat of data buffer
mov ax, [bp+8] ;pass segment to ds

»ov ds, ax

»OV dx, 3ceh ;set video write mode 2
nov al, §

out dx, al

inc dax

nov al, 2 ;video mode 2

out dx, al

nov ax, 0a019h ;point to top left screen cormer
nov es, ax

;set up bit mask register

»ov dx, 3ceh ;point to address register
mov al, 8 ;bit mask register
out dx, al ;address the register

89

inc dax ;point to dats register
mov cx, [bp+10]
mov ax, 80h
shr ax, cl
out ax, al ;send data to mask register
;draw a pixel
mov bx, 60+15360 ;load with screen columm number to write to
cole: mov al,es: [bx] ;2111 the latch registers
nov al, ds:[di] ;pixel coler from imput array
mov es:[bx], a1 ;draw the pixel
inc dai ;jpoint to next input array element
add bx, 80 ;point to pixel below
cmp bx, 20480 ;10240 OR 20480 for 256 pts
j1 cole
end4:
pop ds
pop dai
pop si
pop s
PoP bp
ret
.scrnd4 EBDP
_TEXT ENDS
END
/ /
/ese see/
/+SHOWDAT.C

showdat.c -- Effects retrieval of data previously stored in mmltiple
pages of memory by the DEA, recomputes the FFTs, and displays

one line each time it is called.

./

/

8include <stdio.h>
$include '"hsmos.def"

8define O_RAW O_BIBARY

$define emable_pi

es/

ustcer((rster()RSTC_AUN) | STC_DPAGE1)

Sdefine disable_edm wetcr(rstcr()RSTC_NEM_MASK)
Sdefine enable_p0 wstcr((rstcr()&STC_XUN) | STC_DPAGEO)

unsigned int scratop();
unsigned int scrmbot();
unsigned int totms1();
unsigned iat totms2();
unsigned iat (emove)();
unsigned it (etmstmt)();

Jove

showdat(disp,tock,decem)
int disp; /edisplay option set in amdopt: 1 = 4-channel, 2 = 2-channel,

>2 = 1-channele/

int tock; /eset to 1 or O in getmem for ome-second time tickse/
int decem; /*set to 1 or 0 in getmem for tenth-of-a-second tickse/

{

extera imt cycle, ptkmt, fftout, fftvali], slpi, elp2, eltmp;

90

extern imt lcol, rcol;

extern int gain;

extern char colori[], color2(];

extern unsigned int sdataptr, stmsptr, doffset, emvelope;
extern long unsigned int tmsaddr, showaddr;

int 1,j,k,n, exgain;
static int tenknt;
exgain = gain;
envelope = 0;

eritpm(30, 1p1, 12);

81rt320(30) ;

dataptr =(unsigned ¢)(doffset | showaddr);
tmsptr = (unsigned »)((1p2[0J<<1) | tmsaddr);
enable_p0;

tastat (dataptr,tmsptr,ptkat, exgain);

/efind the signal amplitudes/
for(i=0 ; i<ptkat ; i+)

i2(envelape < dataptr(i]) envelope = dataptr([i];
envelope = (envelope - Ox7Lff) >> 8;

if(disp = 2)

{

k =0;

for(j = 0 ; j < 128 ; j++)

color1{127-3] = (char)fftval[k++];
color2(127-3] = (char)fftval[k++];
}

/emake the time tickse/
if(tock)
{
/*make a longer line every tem seconds*/
++teonknt ;
ig(!(tenknt%10))
{
tenknt = O;
for(j = 120 ; j < 128 ; j++)
color1[127-j] = 63;
}
else
for(§j = 124 ; j < 128 ; j++)
color1[127-j] = 63;
}

if(decem)
{
for(j = 126 ; § < 128 ; j++)
color1[127-j] = 63;
}

colori{127] = 83; /shorizontal line across display areas/

scratop(colori ,cycle);
scrabot(colozr2,cycle);
cycleds;
}

olse if (disp > 2)
{

91

for (jm0; j<128; j++)
colori[127-j] = (char)fftvalljl;

/omake the time tickse/
if(tock)
{
/*make a longer line every ten secondss/
++tenknt ;
if(!'(tenknt¥10))
{
tenknt = O;
for(j = 120 ; j < 128 ; j+*)
color1[127-3j] = 63;
}
else
for(j = 124 ; j < 128 ; j+)
colori[127-j] = 63;
}
if(decem)
{
for(j = 126 ; j < 128 ; j+)
colori[127-j] = €3;
}
color1[127] = 63; /shorizontal line across display areas/

scrntop(color1l, cycle);
putmag(kenvelope,cycle);
cycle++;

}

if (cycle >= 8) {

cycle = 0;

movefull(); /¢ a wide waveform for all memory displayss/
}

readdm(1p2[1], fftval, fftout);
Itmp = 1p2;

1p2 = 1p1;

1pl = 1tmp;

while((inp(IOBASE) & 0x08) == 0);
hl1t3200) ;

return;

}

/ sresseesssetteretstess/
/ /
;TOTHS .ASH

;totms.asm -- moves a buffer from the DMA buffer to THS data memory,
formats and scales the data buffer on the fly.

Call with:

address of input buffer

address of THS Dbuffer

number of words to transfer

scaling coefficient (gain)

source segment - o8
source offset - sl
destination offset - di

Hegative gain is allowed.

. wr we %e we we ws

-TEXT SEGNENT BYTE PUBLIC ’CODE’

92

-TEXIT ENDS

-DATA SBEGMENT WORD PUBLIC ’DATA’
-PATA ENDS

CONST SEGMENT WORD PUBLIC ’COBST’
CONST ENDS

-BSS SEGMENT WORD PUBLIC ’BSS’
-BSs ENDS

DGROUP GROUP CONST, _BSS, _DiATA
ASSUNE CS:_TEXT, DS:DGROUP, SS:DGROUP, ES:DGROUP

_TEXT SEGHMENT

;This version of totms is for displaying and saving a single channel.
PUBLIC _totmsi

-totmsi PROC FAR

push bp
mov bp,sp
push ss
push si
push di
push ds
push es

;called with (ssource, sdest, numwords, gain)

mov si, [bp+6] ;pass source offset

mov ax, [bp+8] ;pass source segment

mov es, ax ;to es

mov di, [bp+10] ;pass destination offset
mov ax, [bp+12] ;pass destination segment
mnov ds, ax ;to ds

mov dx, [bp+14] ;get number of words to move
mov cx, [bp+16] ;get gain

mov bx, O7£ffth

begin: cmp cx,0 ;see if gain is < O
1 less
loopl: mov ax, es:[si) ;get source word
sub ay, bx ;unipolar -> bipolar
shl ax, ¢l ;adjust the gain
mov [di], ax ;put it to destimation (real buffer)
add dai, 2 ;increment destination address
mov ax, es:[si]
sub ax, bx
shl ax, ¢l
mov {di], ax
add dai, 2 ;GET READY FOR NEIT LOOP -
add si, 2 .
dec dx
juz loopi
Jwp bye
93

less:

loop0:

bye:

~totmsi

neg

nov
sudb
sar

mov
sab
sar

add

dec
jnz
mp

Pop
pop
Pop
pop
pop
pop
reot

ENDP

cx

ax, es:[si)
ax, bx

ax, cl
{ail, ax
di, 2

ax, es:[si)
ax, bx

ax, cl
[dil, ax
di, 2

si, 2

dax

loop0
bye

s
ds
di
si
[T

bp

;change sign from neg to pos

;got source word
;unipolar -> bipolar
;adjust the gain

;put it to destination (real buffer)

;increment destination address

;GET READY FOR NEXT LOOP -

»

;This version is used for displaying 2 channels

PUBLIC _totms2

_totms2 PROC FiR

;called

strt:

loop2:

push
mov

push
push
push
push
push

with (*source, sdest, numwords,

mov
mov
mov

bp
bp,sp
ss
si
di
ds
[1]

si, [bp+6]
ax, [bp+s)
es, ax

dai, [bp+10)
ax, {bp+12]
ds, ax

dx, [bp+14]
cx, [bp+16]

bx, O7££fh
cx,0

minus

ax, es:[si)

gain)

;pass source offset

;pass source segment

;to es

;pass destinmation offset
ipass destination segment
;to ds

;86t number of words to move
;get gain

;see if gain is < O

;got source word

94

sub ax, bx ;unipolar -> bipolar
shl ax, cl ;adjust the gain
mov [di), ax ;put it to destination (real buffer)
add si, 2
add di, 2
mov ax, es:[si]
sub ax, bx
shl ax, cl
mov [ai), ax
add dai, 2
add si,2
dec dx
Inz loop2
I finish

minus: neg cx ;a negative gain is allowed

loop2a: mov ax, es:[si) ;get source word
sub ax, bx ;unipolar => bipolar
sar ax, cl ;adjust the gain
mov [di], ax ;put it to destination (real buffer)
add ai, 2
add si, 2 ;increment location in segment source
mov ax, es:[si]
sub ax, bx
sar ax, cl
nov [di), ax
add ai, 2
add si, 2 ;increment location in segment source
dec dx

joz loop2a

finish: pop (1]

pop ds

Pop di

pop si

pPop ss

PoP bp

ret
-totms2 ENDP
-TEXT ENDS
ESD
/ /
/ /
;TITPREP . ASH

;Restores bit map area and bit address register to allow display of
;RSC Graphics text om screem.

;¥rite directly to the EGA video RAN. This routine asswmes the video driver
;is IBN compatible and supports EGA mode 10H (640x350, 16 colors)

-TEXIT SEGMENT BYTE PUBLIC ’CODE’
.TEXIT ENDS

-DATA SEGNEST VORD PUBLIC ’DATA’

95

-DATA EBDS

CONST SEGMENT WORD PUBLIC ’CONST’
CONST ENDS ¢

-BSS SEGMENT WORD PUBLIC ’BSS’
-BSS ENDS

DGROUP GROUP CONST, _BSS, _DiATA

ASSUNE CS:_TEXT, DS:DGROUP, SS:DGROUP, ES:DGROUP
_TEXT SEGMEET
PUBLIC _txtprep

-txtprep PROC FAR

push bp
114 bp,sp
push ss
push si
push di

W
[1]
13
[

;set write mode 1

[;index register 5

al ;send the index

;point to mode register
;choose mode 0

;8et the mode

. v -

Lo

» 3ceh ;point to address register

g
FaEE RERERER FRERER

8 ;bit mask register
out , al ;address the register
inc ;point to data register
mov , Offh
out , al ;send data to mask register
pop
Pop
pop
pop

ret
-txtprep ENDP
-TEXT EBDS

/
/

96

DOCUMENT LIBRARY

January 17, 1990
Distribution List for Technical Report Exchange

Attn: Stella Sanchez-Wade
Documents Section

Scripps Institution of Oceanography
Library, Mail Code C-075C

La Jolla, CA 92093

Hancock Library of Biology &
Oceanography

Alan Hancock Laboratory

University of Southern California

University Park

Los Angeles, CA 90089-0371

Gifts & Exchanges

Library

Bedford Institute of Oceanography
P.O. Box 1006

Dartmouth, NS, B2Y 4A2, CANADA

Office of the International
Ice Patrol
c/o Coast Guard R & D Center
Avery Point
Groton, CT 06340

NOAA/EDIS Miami Library Center
4301 Rickenbacker Causeway
Miami, FL 33149

Library

Skidaway Institute of Oceanography
P.O. Box 13687

Savannah, GA 31416

Institute of Geophysics
University of Hawaii
Library Room 252
2525 Correa Road
Honolulu, HI 96822

Marine Resources Information Center
Building E38-320

MIT

Cambridge, MA 02139

Library

Lamont-Doherty Geological
Observatory

Columbia University

Palisades, NY 10964

Library

Serials Department
Oregon State University
Corvallis, OR 97331

Pell Marine Science Library
University of Rhode Island
Narragansett Bay Campus
Narragansett, RI 02882

Working Collection

Texas A&M University
Dept. of Oceanography
College Station, TX 77843

Library
Virginia Institute of Marine Science
Gloucester Point, VA 23062

Fisheries-Oceanography Library
151 Oceanography Teaching Bldg.
University of Washington

Seattle, WA 98195

Library

RS.M.AS.

University of Miami

4600 Rickenbacker Causeway
Miami, FL 33149

Maury Oceanographic Library
Naval Oceanographic Office
Stennis Space Center

NSTL, MS 39522-5001

Marine Sciences Collection
Mayaguez Campus Library
University of Puerto Rico
Mayagues, Puerto Rico 00708

Library

Institute of Oceanographic Sciences
Deacon Laboratory

Wormley, Godalming

Surrey GU8 SUB

UNITED KINGDOM

The Librarian

CSIRO Marine Laboratories
G.P.O. Box 1538

Hobart, Tasmania
AUSTRALIA 7001

Library

Proudman Oceanographic Laboratory
Bidston Observatory

Birkenhead

Merseyside L43 7 RA

UNITED KINGDOM

Mec90-32

§0272-101

1. REPORT NO. 2 3. Reclpient’s Acceesion No.
REPORT Dg:g:ENTATlON WHOI-90-22
4. Titie and Subtlitie 8. Report Date
. June, 1990

VOICE - A Spectrogram Computer Display Package .
7. Author(s) 8. Performing Organization Rept. No.

Ann Martin, Josko A. Catipovic, Kurt Fristrup, and Peter L. Tyack WHOI 90-22
9. Performing Organization Name and Address 10. Project/TaslvWork Unit Neo.

The Woods Hole Oceanographic Institution 11. Contraci{C) or Grant(G) No.

Woods Hole, Massachusetts 02543 (© N00O14-88-K-0273

(o) N00014-87-K-0236

_1R29 NS25290
12. Sponsoring Organization Name and Address 13. Type of Report & Period Covered
Funding was provided by the Office of Naval Research, the National Institutes of Technical Report
Health, and the Andrew W. Mellon Foundation. 14.

15. Supplementary Notes
This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept., WHOI-90-22.

16. Abstract (Limit: 200 words)

A real-time spectrogram instrument has been developed to provide an inexpensive and field-portable instrument for the
analysis of animal sounds. The instrument integrates a computer graphics display package with a PC-AT computer equipped with
an A/D board and a digital signal processing board. It provides a real-time spectrogram display of frequencies up to 50kHz in a
variety of modes: a running display, a signal halted on screen, successive expanded views of the signal. The signal amplitude may
also be displayed. Portions of the scrolled data may be saved to disk file for future viewing, or as part of a database collection. The
screen display may be manipulated to adapt to special needs. Program source listings are included in the text.

17. Document Analysis a. Descriptors

1. spectrogram

2. digital signal processing
3. bioacoustic analysis

4. computer software

b. identifiers/Open-Ended Terms

¢. COSATI Field/Group

18. Avaliability Statement 19. Security Class (This Report) 21. No. of Pages
Approved for publication; distribution unlimited. UNCLASSIFIED)
20. Security Class (This Page) 22. Price
(See ANSI-Z39.18) See Instructions on Reverse OPTIONAL FORM 272 (4-77)
(Formerly NTIS-35)

Department of Commerce

